87,739 research outputs found

    Automatic assembly design project 1968/9 :|breport of economic planning committee

    Get PDF
    Investigations into automatic assembly systems have been carried out. The conclusions show the major features to be considered by a company operating the machine to assemble the contact block with regard to machine output and financial aspects. The machine system has been shown to be economically viable for use under suitable conditions, but the contact block is considered to be unsuitable for automatic assembly. Data for machine specification, reliability and maintenance has been provided

    Probing the quantumness of channels with mixed states

    Full text link
    We present an alternative approach to the derivation of benchmarks for quantum channels, such as memory or teleportation channels. Using the concept of effective entanglement and the verification thereof, a testing procedure is derived which demands very few experimental resources. The procedure is generalized by allowing for mixed test states. By constructing optimized measure & re-prepare channels, the benchmarks are found to be very tight in the considered experimental regimes.Comment: 11 Pages, 9 Figures, published versio

    Complexity of Quantum States and Reversibility of Quantum Motion

    Get PDF
    We present a quantitative analysis of the reversibility properties of classically chaotic quantum motion. We analyze the connection between reversibility and the rate at which a quantum state acquires a more and more complicated structure in its time evolution. This complexity is characterized by the number M(t){\cal M}(t) of harmonics of the (initially isotropic, i.e. M(0)=0{\cal M}(0)=0) Wigner function, which are generated during quantum evolution for the time tt. We show that, in contrast to the classical exponential increase, this number can grow not faster than linearly and then relate this fact with the degree of reversibility of the quantum motion. To explore the reversibility we reverse the quantum evolution at some moment TT immediately after applying at this moment an instant perturbation governed by a strength parameter ξ\xi. It follows that there exists a critical perturbation strength, ξc2/M(T)\xi_c\approx \sqrt{2}/{\cal M}(T), below which the initial state is well recovered, whereas reversibility disappears when ξξc(T)\xi\gtrsim \xi_c(T). In the classical limit the number of harmonics proliferates exponentially with time and the motion becomes practically irreversible. The above results are illustrated in the example of the kicked quartic oscillator model.Comment: 15 pages, 13 figures; the list of references is update

    Kac-Ward formula and its extension to order-disorder correlators through a graph zeta function

    Full text link
    A streamlined derivation of the Kac-Ward formula for the planar Ising model's partition function is presented and applied in relating the kernel of the Kac-Ward matrices' inverse with the correlation functions of the Ising model's order-disorder correlation functions. A shortcut for both is facilitated by the Bowen-Lanford graph zeta function relation. The Kac-Ward relation is also extended here to produce a family of non planar interactions on Z2\mathbb{Z}^2 for which the partition function and the order-disorder correlators are solvable at special values of the coupling parameters/temperature.Comment: An extension of the Kac-Ward determinantal formula beyond planarity was added (Section 5). To appear in Journal of Statistical Physic

    Fast hyperbolic Radon transform represented as convolutions in log-polar coordinates

    Full text link
    The hyperbolic Radon transform is a commonly used tool in seismic processing, for instance in seismic velocity analysis, data interpolation and for multiple removal. A direct implementation by summation of traces with different moveouts is computationally expensive for large data sets. In this paper we present a new method for fast computation of the hyperbolic Radon transforms. It is based on using a log-polar sampling with which the main computational parts reduce to computing convolutions. This allows for fast implementations by means of FFT. In addition to the FFT operations, interpolation procedures are required for switching between coordinates in the time-offset; Radon; and log-polar domains. Graphical Processor Units (GPUs) are suitable to use as a computational platform for this purpose, due to the hardware supported interpolation routines as well as optimized routines for FFT. Performance tests show large speed-ups of the proposed algorithm. Hence, it is suitable to use in iterative methods, and we provide examples for data interpolation and multiple removal using this approach.Comment: 21 pages, 10 figures, 2 table

    Towards Complexity for Quantum Field Theory States

    Full text link
    We investigate notions of complexity of states in continuous quantum-many body systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of Multiscale Entanglement Renormalization Ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum preserving quadratic generators which form su(1,1)\mathfrak{su}(1,1) algebras. On the manifold of Gaussian states generated by these operations the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and holographic complexity proposals.Comment: 6+7 pages, 6 appendices, 2 figures; v2: references added; acknowledgments expanded; appendix F added, reviewing similarities and differences with hep-th/1707.08570; v3: version published in PR
    corecore