228 research outputs found

    Effect of Motion-Gesture Recognizer Error Pattern on User Workload and Behavior

    Get PDF
    International audienceBi-level thresholding is a motion gesture recognition technique that mediates between false positives, and false negatives by using two threshold levels: a tighter threshold that limits false positives and recognition errors, and a looser threshold that prevents repeated errors (false negatives) by analyzing movements in sequence. In this paper, we examine the effects of bi-level thresholding on the workload and acceptance of end-users. Using a wizard-of-Oz recognizer, we hold recognition rates constant and adjust for fixed versus bi-level thresholding. Given identical recognition rates, we show that systems using bi-level thresholding result in significant lower workload scores on the NASA-TLX and accelerometer variance. Overall , these results argue for the viability of bi-level thresholding as an effective technique for balancing between false positives, recognition errors and false negatives

    Adaptive Cognitive Interaction Systems

    Get PDF
    Adaptive kognitive Interaktionssysteme beobachten und modellieren den Zustand ihres Benutzers und passen das Systemverhalten entsprechend an. Ein solches System besteht aus drei Komponenten: Dem empirischen kognitiven Modell, dem komputationalen kognitiven Modell und dem adaptiven Interaktionsmanager. Die vorliegende Arbeit enthält zahlreiche Beiträge zur Entwicklung dieser Komponenten sowie zu deren Kombination. Die Ergebnisse werden in zahlreichen Benutzerstudien validiert

    Effects of different push-to-talk solutions on driving performance

    Get PDF
    Police officers have been using the Project54 system in their vehicles for a number of years. They have also started using the handheld version of Project54 outside their vehicles recently. There is a need to connect these two instances of the system into a continuous user interface. On the other hand, research has shown that the PTT button location affects driving performance. This thesis investigates the difference between the old, fixed PTT button and a new wireless PTT glove, that could be used in and outside of the car. The thesis describes the design of the glove and the driving simulator experiment that was conducted to investigate the glove\u27s merit. The main results show that the glove allows more freedom of operation, appears to be easier and more efficient to operate and it reduces the visual distraction of the drivers

    The Dollar General: Continuous Custom Gesture Recognition Techniques At Everyday Low Prices

    Get PDF
    Humans use gestures to emphasize ideas and disseminate information. Their importance is apparent in how we continuously augment social interactions with motion—gesticulating in harmony with nearly every utterance to ensure observers understand that which we wish to communicate, and their relevance has not escaped the HCI community\u27s attention. For almost as long as computers have been able to sample human motion at the user interface boundary, software systems have been made to understand gestures as command metaphors. Customization, in particular, has great potential to improve user experience, whereby users map specific gestures to specific software functions. However, custom gesture recognition remains a challenging problem, especially when training data is limited, input is continuous, and designers who wish to use customization in their software are limited by mathematical attainment, machine learning experience, domain knowledge, or a combination thereof. Data collection, filtering, segmentation, pattern matching, synthesis, and rejection analysis are all non-trivial problems a gesture recognition system must solve. To address these issues, we introduce The Dollar General (TDG), a complete pipeline composed of several novel continuous custom gesture recognition techniques. Specifically, TDG comprises an automatic low-pass filter tuner that we use to improve signal quality, a segmenter for identifying gesture candidates in a continuous input stream, a classifier for discriminating gesture candidates from non-gesture motions, and a synthetic data generation module we use to train the classifier. Our system achieves high recognition accuracy with as little as one or two training samples per gesture class, is largely input device agnostic, and does not require advanced mathematical knowledge to understand and implement. In this dissertation, we motivate the importance of gestures and customization, describe each pipeline component in detail, and introduce strategies for data collection and prototype selection

    Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects

    Get PDF
    These are the Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects

    Ghost-in-the-Machine reveals human social signals for human-robot interaction

    Get PDF
    © 2015 Loth, Jettka, Giuliani and de Ruiter. We used a new method called "Ghost-in-the-Machine" (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the distance to the bar) were relevant at different stages of the interaction. This provided insights into human social behavior necessary for the development of socially competent robots. When initiating the drink-order interaction, the most important recognizers were those based on computer vision. When drink orders were being placed, however, the most important information source was the speech recognition. Interestingly, the participants used only a subset of the available information, focussing only on a few relevant recognizers while ignoring others. This reduced the risk of acting on erroneous sensor data and enabled them to complete service interactions more swiftly than a robot using all available sensor data. We also investigated socially appropriate response strategies. In their responses, the participants preferred to use the same modality as the customer's requests, e.g., they tended to respond verbally to verbal requests. Also, they added redundancy to their responses, for instance by using echo questions. We argue that incorporating the social strategies discovered with the GiM paradigm in multimodal grammars of human-robot interactions improves the robustness and the ease-of-use of these interactions, and therefore provides a smoother user experience

    Enhancing Usability, Security, and Performance in Mobile Computing

    Get PDF
    We have witnessed the prevalence of smart devices in every aspect of human life. However, the ever-growing smart devices present significant challenges in terms of usability, security, and performance. First, we need to design new interfaces to improve the device usability which has been neglected during the rapid shift from hand-held mobile devices to wearables. Second, we need to protect smart devices with abundant private data against unauthorized users. Last, new applications with compute-intensive tasks demand the integration of emerging mobile backend infrastructure. This dissertation focuses on addressing these challenges. First, we present GlassGesture, a system that improves the usability of Google Glass through a head gesture user interface with gesture recognition and authentication. We accelerate the recognition by employing a novel similarity search scheme, and improve the authentication performance by applying new features of head movements in an ensemble learning method. as a result, GlassGesture achieves 96% gesture recognition accuracy. Furthermore, GlassGesture accepts authorized users in nearly 92% of trials, and rejects attackers in nearly 99% of trials. Next, we investigate the authentication between a smartphone and a paired smartwatch. We design and implement WearLock, a system that utilizes one\u27s smartwatch to unlock one\u27s smartphone via acoustic tones. We build an acoustic modem with sub-channel selection and adaptive modulation, which generates modulated acoustic signals to maximize the unlocking success rate against ambient noise. We leverage the motion similarities of the devices to eliminate unnecessary unlocking. We also offload heavy computation tasks from the smartwatch to the smartphone to shorten response time and save energy. The acoustic modem achieves a low bit error rate (BER) of 8%. Compared to traditional manual personal identification numbers (PINs) entry, WearLock not only automates the unlocking but also speeds it up by at least 18%. Last, we consider low-latency video analytics on mobile devices, leveraging emerging mobile backend infrastructure. We design and implement LAVEA, a system which offloads computation from mobile clients to edge nodes, to accomplish tasks with intensive computation at places closer to users in a timely manner. We formulate an optimization problem for offloading task selection and prioritize offloading requests received at the edge node to minimize the response time. We design and compare various task placement schemes for inter-edge collaboration to further improve the overall response time. Our results show that the client-edge configuration has a speedup ranging from 1.3x to 4x against running solely by the client and 1.2x to 1.7x against the client-cloud configuration

    Ambient hues and audible cues: An approach to automotive user interface design using multi-modal feedback

    Get PDF
    The use of touchscreen interfaces for in-vehicle information, entertainment, and for the control of comfort settings is proliferating. Moreover, using these interfaces requires the same visual and manual resources needed for safe driving. Guided by much of the prevalent research in the areas of the human visual system, attention, and multimodal redundancy the Hues and Cues design paradigm was developed to make touchscreen automotive user interfaces more suitable to use while driving. This paradigm was applied to a prototype of an automotive user interface and evaluated with respects to driver performance using the dual-task, Lane Change Test (LCT). Each level of the design paradigm was evaluated in light of possible gender differences. The results of the repeated measures experiment suggests that when compared to interfaces without both the Hues and the Cues paradigm applied, the Hues and Cues interface requires less mental effort to operate, is more usable, and is more preferred. However, the results differ in the degradation in driver performance with interfaces that only have visual feedback resulting in better task times and significant gender differences in the driving task with interfaces that only have auditory feedback. Overall, the results reported show that the presentation of multimodal feedback can be useful in design automotive interfaces, but must be flexible enough to account for individual differences

    Exploring the Potential of Wrist-Worn Gesture Sensing

    Get PDF
    This thesis aims to explore the potential of wrist-worn gesture sensing. There has been a large amount of work on gesture recognition in the past utilizing different kinds of sensors. However, gesture sets tested across different work were all different, making it hard to compare them. Also, there has not been enough work on understanding what types of gestures are suitable for wrist-worn devices. Our work addresses these two problems and makes two main contributions compared to previous work: the specification of larger gesture sets, which were verified through an elicitation study generated by combining previous work; and an evaluation of the potential of gesture sensing with wrist-worn sensors. We developed a gesture recognition system, WristRec, which is a low-cost wrist-worn device utilizing bend sensors for gesture recognition. The design of WristRec aims to measure the tendon movement at the wrist while people perform gestures. We conducted a four-part study to verify the validity of the approach and the extent of gestures which can be detected using a wrist-worn system. During the initial stage, we verified the feasibility of WristRec using the Dynamic Time Warping (DTW) algorithm to perform gesture classification on a group of 5 gestures, the gesture set of the MYO armband. Next, we conducted an elicitation study to understand the trade-offs between hand, wrist, and arm gestures. The study helped us understand the type of gestures which wrist-worn system should be able to recognize. It also served as the base of our gesture set and our evaluation on the gesture sets used in the previous research. To evaluate the overall potential of wrist-worn recognition, we explored the design of hardware to recognize gestures by contrasting an Inertial measurement unit (IMU) only recognizer (the Serendipity system of Wen et al.) with our system. We assessed accuracies on a consensus gesture set and on a 27-gesture referent set, both extracted from the result of our elicitation study. Finally, we discuss the implications of our work both to the comparative evaluation of systems and to the design of enhanced hardware sensing
    • …
    corecore