42,401 research outputs found

    Attention, effort, and fatigue: Neuropsychological perspectives

    Get PDF
    Models of attention, effort, and fatigue are reviewed. Methods are discussed for measuring these phenomena from a neuropsychological and psychophysiological perspective. The following methodologies are included: (1) the autonomic measurement of cognitive effort and quality of encoding; (2) serial assessment approaches to neurophysiological assessment; and (3) the assessment of subjective reports of fatigue using multidimensional ratings and their relationship to neurobehavioral measures

    Multi-tasking uncovers right spatial neglect and extinction in chronic left-hemisphere stroke patients

    Get PDF
    open7noUnilateral Spatial Neglect, the most dramatic manifestation of contralesional space unawareness, is a highly heterogeneous syndrome. The presence of neglect is related to core spatially lateralized deficits, but its severity is also modulated by several domain-general factors (such as alertness or sustained attention) and by task demands. We previously showed that a computer-based dual-task paradigm exploiting both lateralized and non-lateralized factors (i.e., attentional load/multitasking) better captures this complex scenario and exacerbates deficits for the contralesional space after right hemisphere damage. Here we asked whether multitasking would reveal contralesional spatial disorders in chronic left hemisphere damaged (LHD) stroke patients, a population in which impaired spatial processing is thought to be uncommon. Ten consecutive LHD patients with no signs of right-sided neglect at standard neuropsychological testing performed a computerized spatial monitoring task with and without concurrent secondary tasks (i.e., multitasking). Severe contralesional (right) space unawareness emerged in most patients under attentional load in both the visual and auditory modalities. Multitasking affected the detection of contralesional stimuli both when presented concurrently with an ipsilesional one (i.e., extinction for bilateral targets) and when presented in isolation (i.e., left neglect for right-sided targets). No spatial bias emerged in a control group of healthy elderly participants, who performed at ceiling, as well as in a second control group composed of patients with Mild Cognitive Impairment. We conclude that the pathological spatial asymmetry in LHD patients cannot be attributed to a global reduction of cognitive resources but it is the consequence of unilateral brain damage. Clinical and theoretical implications of the load-dependent lack of awareness for contralesional hemispace following LHD are discussed.embargoed_20180601Blini, Elvio; Romeo, Zaira; Spironelli, Chiara; Pitteri, Marco; Meneghello, Francesca; Bonato, Mario; Zorzi, MarcoBlini, ELVIO ADALBERTO; Romeo, Zaira; Spironelli, Chiara; Pitteri, Marco; Meneghello, Francesca; Bonato, Mario; Zorzi, Marc

    Cognitive performance is related to central sensitization and health-related quality of life in patients with chronic whiplash-associated disorders and fibromyalgia

    Get PDF
    Background: A growing body of research has demonstrated that impaired central pain modulation or central sensitization (CS) is a crucial mechanism for the development of persistent pain in chronic whiplash-associated disorders (WAD) and fibromyalgia (FM) patients. Furthermore, there is increasing evidence for cognitive dysfunctions among these patients. In addition, chronic WAD and FM patients often report problems with health-related quality of life (QoL). Yet, there is limited research concerning the interrelations between cognitive performance, indices of CS, and health-related QoL in these patients. Objectives: (1) Examining the presence of cognitive impairment, CS, and limitations on health-related QoL in patients with chronic WAD and FM compared to healthy controls. (2) Examining interrelations between performance-based cognitive functioning, CS, and self-reported health-related QoL in these 3 study groups. Study Design: A case-control study was conducted. Setting: The present study took place at the University Hospital Brussels, the University of Brussels, and the University of Antwerp. Methods: Fifty-nine patients (16 chronic WAD patients, 21 FM patients, and 22 pain-free volunteers) filled out the Short Form 36 item Health Survey (SF-36), a self-reported psychosocial questionnaire, to assess health-related QoL. Next, they were subjected to various pain measurements (pressure hyperalgesia, deep-tissue hyperalgesia, temporal summation [TS], and conditioned pain modulation [CPM]). Finally, participants completed a battery of performance-based cognitive tests (Stroop task, psychomotor vigilance task [PVT], and operation span task [OSPAN]). Results: Significant cognitive impairment, bottom-up sensitization, and decreased health-related QoL were demonstrated in patients with chronic WAD and FM compared to healthy controls (P < 0.017). CPM was comparable between the 3 groups. Cognitive performance was significantly related to central pain modulation (deep-tissue hyperalgesia, TS, CPM) as well as to self-reported health-related QoL (P < 0.05). Decreased cognitive performance was related to deficient central pain modulation in healthy controls. Further, significant correlations between decreased cognitive performance and reduced health-related QoL were revealed among all study groups. Additionally, FM patients showed correlations between cognitive impairment and increased health-related QoL. Remarkably, impaired selective attention and working memory were related to less TS, whereas impaired sustained attention was correlated with dysfunctional CPM in FM patients. Limitations: Based on the current cross-sectional study no firm conclusions can be drawn on the causality of the relations. Conclusion: In conclusion, this paper has demonstrated significant cognitive deficits, signs of CS, and reduced health-related QoL in chronic WAD and FM patients compared to healthy individuals. Significant relations between cognitive performance and CS as well as health-related QoL were demonstrated. These results provide preliminary evidence for the clinical importance of objectively measured cognitive deficits in patients with chronic WAD and FM

    Acute Effects of Exercise on Cognitive Performances of Older Adults

    Get PDF
    Accelerating rates of structural decline become evident during the third and fourth decades of human life, with disproportionate degeneration occurring in the frontal, parietal, and temporal brain lobes. As the structure of the brain declines, a broad array of cognitive processes involving memory, decision making, and selective attention are reduced as well (Raz 2000, Park et al. 2001). Cardiovascular exercise has been associated with improved cognitive functioning in aging humans, suggesting that increased vascular supply enhances availability of oxygen, nutrients, and other physical entities to nourish the brain. Previous experimentation on older adults revealed significant positive effects of exercise on a variety of memory types following participation in a program six or more months in duration (Colcombe 2003, Kramer et al.1999). The primary focus of this study was to test the effects of acute aerobic exercise on cognitive functioning of adults over the age of 60. A second purpose was to determine that the positive neurological effects of exercise can start taking place immediately. The hypothesis is that memory retention, mental processing speed, and selective attention would acutely improve in the participants after they had exercised, in comparison to their cognitive state prior to exercise. Cognitive performances both before and after exercise were tested using the Stroop test. All participants completed the post-exercise test with improved scores (p=0.000) indicating an increase in cognitive ability, relating exercise and improved cognitive function

    Theories of anterior cingulate cortex function : opportunity cost

    No full text
    The target article highlights the role of the anterior cingulate cortex (ACC) in conflict monitoring, but ACC function may be better understood in terms of the hierarchical organization of behavior. This proposal suggests that the ACC selects extended goal-directed actions according to their learned costs and benefits and executes those behaviors subject to depleting resources

    Direct and indirect effects of mood on risk decision making in safety-critical workers

    Get PDF
    The study aimed to examine the direct influence of specific moods (fatigue, anxiety, happiness) on risk in safety-critical decision making. It further aimed to explore indirect effects, specifically, the potential mediating effects of information processing assessed using a goodness-of-simulation task. Trait fatigue and anxiety were associated with an increase in risk taking on the Safety-Critical Personal Risk Inventory (S-CPRI), however the effect of fatigue was partialled out by anxiety. Trait happiness, in contrast was related to less risky decision making. Findings concerning the ability to simulate suggest that better simulators made less risky decisions. Anxious workers were generally less able to simulate. It is suggested that in this safety-critical environment happiness had a direct effect on risk decision making while the effect of trait anxiety was mediated by goodness-of-simulation

    Enhancing human cognition with cocoa flavonoids

    Get PDF
    Enhancing cognitive abilities has become a fascinating scientific challenge, recently driven by the interest in preventing age-related cognitive decline and sustaining normal cogni-tive performance in response to cognitively demanding environments. In recent years, cocoa and cocoa-derived products, as a rich source of flavonoids, mainly the flavanols sub-class, have been clearly shown to exert cardiovascular benefits. More recently, neuromodulation and neuroprotective actions have been also suggested. Here, we dis-cuss human studies specifically aimed at investigating the effects of acute and chronic administration of cocoa flavanols on different cognitive domains, such as executive func-tions, attention and memory. Through a variety of direct and indirect biological actions, in part still speculative, cocoa and cocoa-derived food have been suggested to possess the potential to counteract cognitive decline and sustain cognitive abilities, particularly among patients at risk. Although still at a preliminary stage, research investigating the relations between cocoa and cognition shows dose-dependent improvements in general cognition, attention, processing speed, and working memory. Moreover, cocoa flavanols administration could also enhance normal cognitive functioning and exert a protective role on cognitive performance and cardiovascular function specifically impaired by sleep loss, in healthy subjects. Together, these findings converge at pointing to cocoa as a new interesting nutraceutical tool to protect human cognition and counteract different types of cognitive decline, thus encouraging further investigations. Future research should include complex experimental designs combining neuroimaging techniques with physiological and behavioral measures to better elucidate cocoa neuromodulatory properties and directly compare immediate versus long-lasting cognitive effects

    Cognitive effort modulates connectivity between dorsal anterior cingulate cortex and task-relevant cortical areas

    Get PDF
    Investment of cognitive effort is required in everyday life and has received ample attention in recent neurocognitive frameworks. The neural mechanism of effort investment is thought to be structured hierarchically, with dorsal anterior cingulate cortex (dACC) at the highest level, recruiting task-specific upstream areas. In the current fMRI study, we tested whether dACC is generally active when effort demand is high across tasks with different stimuli, and whether connectivity between dACC and task-specific areas is increased depending on the task requirements and effort level at hand. For that purpose, a perceptual detection task was administered that required male and female human participants to detect either a face or a house in a noisy image. Effort demand was manipulated by adding little (low effort) or much (high effort) noise to the images. Results showed a network of dACC, anterior insula (AI), and intraparietal sulcus (IPS) to be more active when effort demand was high, independent of the performed task (face or house detection). Importantly, effort demand modulated functional connectivity between dACC and face-responsive or house-responsive perceptual areas, depending on the task at hand. This shows that dACC, AI, and IPS constitute a general effort-responsive network and suggests that the neural implementation of cognitive effort involves dACC-initiated sensitization of task-relevant areas

    Brain enhancement through cognitive training: A new insight from brain connectome

    Get PDF
    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive function

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 314)

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1988
    • …
    corecore