136 research outputs found

    Towards a Realistic Model for Failure Propagation in Interdependent Networks

    Full text link
    Modern networks are becoming increasingly interdependent. As a prominent example, the smart grid is an electrical grid controlled through a communications network, which in turn is powered by the electrical grid. Such interdependencies create new vulnerabilities and make these networks more susceptible to failures. In particular, failures can easily spread across these networks due to their interdependencies, possibly causing cascade effects with a devastating impact on their functionalities. In this paper we focus on the interdependence between the power grid and the communications network, and propose a novel realistic model, HINT (Heterogeneous Interdependent NeTworks), to study the evolution of cascading failures. Our model takes into account the heterogeneity of such networks as well as their complex interdependencies. We compare HINT with previously proposed models both on synthetic and real network topologies. Experimental results show that existing models oversimplify the failure evolution and network functionality requirements, resulting in severe underestimations of the cascading failures.Comment: 7 pages, 6 figures, to be published in conference proceedings of IEEE International Conference on Computing, Networking and Communications (ICNC 2016), Kauai, US

    Robustness on distributed coupling networks with multiple dependent links from finite functional components

    Full text link
    The rapid advancement of technology underscores the critical importance of robustness in complex network systems. This paper presents a framework for investigating the structural robustness of interconnected network models. This paper presents a framework for investigating the structural robustness of interconnected network models. In this context, we define functional nodes within interconnected networks as those belonging to clusters of size greater than or equal to ss in the local network, while maintaining at least MM significant dependency links. This model presents precise analytical expressions for the cascading failure process, the proportion of functional nodes in the stable state, and a methodology for calculating the critical threshold. The findings reveal an abrupt phase transition behavior in the system following the initial failure. Additionally, we observe that the system necessitates higher internal connection densities to avert collapse, especially when more effective support links are required. These results are validated through simulations using both Poisson and power-law network models, which align closely with the theoretical outcomes. The method proposed in this study can assist decision-makers in designing more resilient reality-dependent systems and formulating optimal protection strategies

    Threat Assessment for Multistage Cyber Attacks in Smart Grid Communication Networks

    Get PDF
    In smart grids, managing and controlling power operations are supported by information and communication technology (ICT) and supervisory control and data acquisition (SCADA) systems. The increasing adoption of new ICT assets in smart grids is making smart grids vulnerable to cyber threats, as well as raising numerous concerns about the adequacy of current security approaches. As a single act of penetration is often not sufficient for an attacker to achieve his/her goal, multistage cyber attacks may occur. Due to the interdependence between the power grid and the communication network, a multistage cyber attack not only affects the cyber system but impacts the physical system. This thesis investigates an application-oriented stochastic game-theoretic cyber threat assessment framework, which is strongly related to the information security risk management process as standardized in ISO/IEC 27005. The proposed cyber threat assessment framework seeks to address the specific challenges (e.g., dynamic changing attack scenarios and understanding cascading effects) when performing threat assessments for multistage cyber attacks in smart grid communication networks. The thesis looks at the stochastic and dynamic nature of multistage cyber attacks in smart grid use cases and develops a stochastic game-theoretic model to capture the interactions of the attacker and the defender in multistage attack scenarios. To provide a flexible and practical payoff formulation for the designed stochastic game-theoretic model, this thesis presents a mathematical analysis of cascading failure propagation (including both interdependency cascading failure propagation and node overloading cascading failure propagation) in smart grids. In addition, the thesis quantifies the characterizations of disruptive effects of cyber attacks on physical power grids. Furthermore, this thesis discusses, in detail, the ingredients of the developed stochastic game-theoretic model and presents the implementation steps of the investigated stochastic game-theoretic cyber threat assessment framework. An application of the proposed cyber threat assessment framework for evaluating a demonstrated multistage cyber attack scenario in smart grids is shown. The cyber threat assessment framework can be integrated into an existing risk management process, such as ISO 27000, or applied as a standalone threat assessment process in smart grid use cases

    Vulnérabilité, interdépendance et analyse des risques des postes sources et des modes d’exploitation décentralisés des réseaux électriques

    Get PDF
    In view of the increasing use of Information and Communication Technol-ogies in power systems, it is essential to study the interdependencies between these coupled heterogeneous systems. This thesis focuses on the modeling of multi- infrastructure systems. This includes interdependencies and the three major failures families: common mode, escalat-ing and cascading. It is indeed necessary to identify the weaknesses that can trigger one or multiple failure(s) and cascade through these interdependent infrastructures, causing unex-pected and increasingly more serious failures to other infrastructures. In this context, different approaches, based on the theory of Complex Networks, are developed to identify the most critical components in the coupled heterogeneous system. One of the major scientific barriers addressed in this thesis is the development of a unified mathematical model to represent the behavior.Au vu de l’utilisation croissante des technologies de l’information et de la communication dans les réseaux électriques, il est indispensable d’étudier l’étroite liaison entre ces infrastructures et d’avoir une vision intégrée du système couplé. Cette thèse porte ainsi sur la modélisation des systèmes multi-infrastructures. Cela inclut les interdépendances et les trajectoires de défaillances de type modes communs, aggravations et cascades. Il est en effet nécessaire d’identifier les points de faiblesse qui peuvent déclencher une ou de multiples défaillance(s), se succéder en cascade au travers de ces infrastructures liées et ainsi entrainer des défaillances inattendues et de plus en plus graves dans des autres infrastructures. Dans cette optique, différents modèles basés sur la théorie des Réseaux Complexes sont développés afin d’identifier les composants les plus importantes, et pourtant critiques, dans le système interconnecté. Un des principaux verrous scientifiques levé dans cette thèse est relatif au développement d'un modèle mathématique « unifié » afin de représenter les comportements des multiples infrastructures non-homogènes qui ont des interdépendances asymétriques

    Cyber-Physical Power System (CPPS): A Review on Modelling, Simulation, and Analysis with Cyber Security Applications

    Get PDF
    Cyber-Physical System (CPS) is a new kind of digital technology that increases its attention across academia, government, and industry sectors and covers a wide range of applications like agriculture, energy, medical, transportation, etc. The traditional power systems with physical equipment as a core element are more integrated with information and communication technology, which evolves into the Cyber-Physical Power System (CPPS). The CPPS consists of a physical system tightly integrated with cyber systems (control, computing, and communication functions) and allows the two-way flows of electricity and information for enabling smart grid technologies. Even though the digital technologies monitoring and controlling the electric power grid more efficiently and reliably, the power grid is vulnerable to cybersecurity risk and involves the complex interdependency between cyber and physical systems. Analyzing and resolving the problems in CPPS needs the modelling methods and systematic investigation of a complex interaction between cyber and physical systems. The conventional way of modelling, simulation, and analysis involves the separation of physical domain and cyber domain, which is not suitable for the modern CPPS. Therefore, an integrated framework needed to analyze the practical scenario of the unification of physical and cyber systems. A comprehensive review of different modelling, simulation, and analysis methods and different types of cyber-attacks, cybersecurity measures for modern CPPS is explored in this paper. A review of different types of cyber-attack detection and mitigation control schemes for the practical power system is presented in this paper. The status of the research in CPPS around the world and a new path for recommendations and research directions for the researchers working in the CPPS are finally presented.publishedVersio

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well

    Cascading Failures and Contingency Analysis for Smart Grid Security

    Get PDF
    The modern electric power grid has become highly integrated in order to increase the reliability of power transmission from the generating units to end consumers. In addition, today’s power system are facing a rising appeal for the upgrade to a highly intelligent generation of electricity networks commonly known as Smart Grid. However, the growing integration of power system with communication network also brings increasing challenges to the security of modern power grid from both physical and cyber space. Malicious attackers can take advantage of the increased access to the monitoring and control of the system and exploit some of the inherent structural vulnerability of power grids. Therefore, determining the most vulnerable components (e.g., buses or generators or transmission lines) is critically important for power grid defense. This dissertation introduces three different approaches to enhance the security of the smart grid. Motivated by the security challenges of the smart grid, the first goal of this thesis is to facilitate the understanding of cascading failure and blackouts triggered by multi-component attacks, and to support the decision making in the protection of a reliable and secure smart grid. In this work, a new definition of load is proposed by taking power flow into consideration in comparison with the load definition based on degree or network connectivity. Unsupervised learning techniques (e.g., K-means algorithm and self-organizing map (SOM)) are introduced to find the vulnerable nodes and performance comparison is done with traditional load based attack strategy. Second, an electrical distance approach is introduced to find the vulnerable branches during contingencies. A new network structure different than the original topological structure is formed based on impedance matrix which is referred as electrical structure. This structure is pruned to make it size compatible with the topological structure and the common branches between the two different structures are observed during contingency analysis experiments. Simulation results for single and multiple contingencies have been reported and the violation of line limits during single and multiple outages are observed for vulnerability analysis. Finally, a cyber-physical power system (CPS) testbed is introduced as an accurate cyber-physical environment in order to observe the system behavior during malicious attacks and different disturbance scenarios. The application areas and architecture of proposed CPS testbed have been discussed in details. The testbed’s efficacy is then evaluated by conducting real-time cyber attacks and exploring the impact in a physical system. The possible mitigation strategies are suggested for defense against the attack and protect the system from being unstable

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well
    • …
    corecore