998 research outputs found

    Compact modeling of the rf and noise behavior of multiple-gate mosfets

    Get PDF
    La reducción de la tecnología MOSFET planar ha sido la opción tecnológica dominante en las últimas décadas. Sin embargo, hemos llegado a un punto en el que los materiales y problemas en los dispositivos surgen, abriendo la puerta para estructuras alternativas de los dispositivos. Entre estas estructuras se encuentran los dispositivos DG, SGT y Triple-Gate. Estas tres estructuras están estudiadas en esta tesis, en el contexto de rducir las dimensiones de los dispositivos a tamaños tales que los mecanismos cuánticos y efectos de calan coro deben tenerse n cuenta. Estos efectos vienen con una seria de desafíos desde el pun to de vista de modelación, unos de los más grandes siendo el tiempo y los recursos comprometidos para ejecutar las simulaciones. para resolver este problema, esta tesis propone modelos comlets analíticos y compactos para cada una de las geometrías, validos desde DC hasta el modo de operación en Rf para los nodos tecnológicos futuros. Dichos modelos se han extendido para analizar el ruido de alta frecuencia en estos diapositivos

    Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs

    Get PDF
    Intrinsic parameter fluctuations introduced by discreteness of charge and matter will play an increasingly important role when semiconductor devices are scaled to decananometer and nanometer dimensions in next-generation integrated circuits and systems. In this paper, we review the analytical and the numerical simulation techniques used to study and predict such intrinsic parameters fluctuations. We consider random discrete dopants, trapped charges, atomic-scale interface roughness, and line edge roughness as sources of intrinsic parameter fluctuations. The presented theoretical approach based on Green's functions is restricted to the case of random discrete charges. The numerical simulation approaches based on the drift diffusion approximation with density gradient quantum corrections covers all of the listed sources of fluctuations. The results show that the intrinsic fluctuations in conventional MOSFETs, and later in double gate architectures, will reach levels that will affect the yield and the functionality of the next generation analog and digital circuits unless appropriate changes to the design are made. The future challenges that have to be addressed in order to improve the accuracy and the predictive power of the intrinsic fluctuation simulations are also discussed

    Statistical circuit simulations - from ‘atomistic’ compact models to statistical standard cell characterisation

    Get PDF
    This thesis describes the development and application of statistical circuit simulation methodologies to analyse digital circuits subject to intrinsic parameter fluctuations. The specific nature of intrinsic parameter fluctuations are discussed, and we explain the crucial importance to the semiconductor industry of developing design tools which accurately account for their effects. Current work in the area is reviewed, and three important factors are made clear: any statistical circuit simulation methodology must be based on physically correct, predictive models of device variability; the statistical compact models describing device operation must be characterised for accurate transient analysis of circuits; analysis must be carried out on realistic circuit components. Improving on previous efforts in the field, we posit a statistical circuit simulation methodology which accounts for all three of these factors. The established 3-D Glasgow atomistic simulator is employed to predict electrical characteristics for devices aimed at digital circuit applications, with gate lengths from 35 nm to 13 nm. Using these electrical characteristics, extraction of BSIM4 compact models is carried out and their accuracy in performing transient analysis using SPICE is validated against well characterised mixed-mode TCAD simulation results for 35 nm devices. Static d.c. simulations are performed to test the methodology, and a useful analytic model to predict hard logic fault limitations on CMOS supply voltage scaling is derived as part of this work. Using our toolset, the effect of statistical variability introduced by random discrete dopants on the dynamic behaviour of inverters is studied in detail. As devices scaled, dynamic noise margin variation of an inverter is increased and higher output load or input slew rate improves the noise margins and its variation. Intrinsic delay variation based on CV/I delay metric is also compared using ION and IEFF definitions where the best estimate is obtained when considering ION and input transition time variations. Critical delay distribution of a path is also investigated where it is shown non-Gaussian. Finally, the impact of the cell input slew rate definition on the accuracy of the inverter cell timing characterisation in NLDM format is investigated

    Nanowire Transistors and RF Circuits for Low-Power Applications

    Get PDF
    The background of this thesis is related to the steadily increasing demand of higher bandwidth and lower power consumption for transmitting data. The work aims at demonstrating how new types of structures, at the nanoscale, combined with what is referred to as exotic materials, can help benefit in electronics by lowering the consumed power, possibly by an order of magnitude, compared to the industry standard, silicon (Si), used today. Nanowires are semiconductor rods, with two dimensions at the nanoscale, which can be either grown with a bottom-up technique, or etched out with a top-down approach. The research interest concerning nanowires has gradually increasing for over two decades. Today, few have doubts that nanowires represent an attractive alternative, as scaling of planar structures has reached fundamental limits. With the enhanced electrostatics of a surrounding gate, nanowires offer the possibility of continued miniaturization, giving semiconductors a prolonged window of performance improvements. As a material choice, compound semiconductors with elements from group III and V (III-Vs), such as indium arsenide (InAs), have the possibility to dramatically decrease power consumption. The reason is the inherent electron transport properties of III-Vs, where an electron can travel, in the order of, 10 times faster than in Si. In the projected future, inclusion of III-Vs, as an extension to the Si-CMOS platform, seems almost inevitable, with many of the largest electronics manufacturing companies showing great interest. To investigate the technology potential, we have fabricated InAs nanowire metal-oxide-semiconductor field effect transistors (NW-FETs). The performance has been evaluated measuring both RF and DC characteristics. The best devices show a transconductance of 1.36 mS/µm (a device with a single nanowire, normalized to the nanowire circumference) and a maximum unilateral power gain at 57 GHz (for a device with several parallel nanowires), both values at a drive voltage of 0.5 V. The performance metrics are found to be limited by the capacitive load of the contact pads as well as the resistance in the non-gated segments of the nanowires. Using computer models, we have also been able to extract intrinsic transport properties, quantifying the velocity of charge carrier injection, which is the limiting property of semi-ballistic and ballistic devices. The value for our 45-nm-in-diameter nanowires, with 200 nm channel length, is determined to 1.7∙107 cm/s, comparable to other state-of-the-art devices at the same channel length. To demonstrate a higher level of functionality, we have connected several NW-FETs in a circuit. The fabricated circuit is a single balanced differential direct conversion mixer and is composed of three stages; transconductance, mixing, and transimpedance. The basic idea of the mixer circuit is that an information signal can either be extracted from or inserted into a carrier wave at a higher frequency than the information wave itself. It is the relative size of the first and the third stage that accounts for the circuit conversion gain. Measured circuits show a voltage conversion gain of 6 dB and a 3-dB bandwidth of 2 GHz. A conversion mixer is a vital component when building a transceiver, like those found in a cellphone and any other type of radio signal transmitting device. For all types of signals, noise imposes a fundamental limitation on the minimal, distinguishable amplitude. As transistors are scaled down, fewer carriers are involved in charge transport, and the impact of frequency dependent low-frequency noise gets relatively larger. Aiming towards low power applications, it is thus of importance to minimize the amount of transistor generated noise. Included in the thesis are studies of the level and origin of low-frequency 1/f-noise generated in NW-FETs. The measured noise spectral density is comparable to other non-planar devices, including those fabricated in Si. The data suggest that the level of generated noise can be substantially lowered by improving the high-k dielectric film quality and the channel interface. One significant discovery is that the part of the noise originating from the bulk nanowire, identified as mobility fluctuations, is comparably much lower than the measured noise level related to the nanowire surface. This result is promising as mobility fluctuations set the lower limit of what is achievable within a material system

    Simulation of charge-trapping in nano-scale MOSFETs in the presence of random-dopants-induced variability

    Get PDF
    The growing variability of electrical characteristics is a major issue associated with continuous downscaling of contemporary bulk MOSFETs. In addition, the operating conditions brought about by these same scaling trends have pushed MOSFET degradation mechanisms such as Bias Temperature Instability (BTI) to the forefront as a critical reliability threat. This thesis investigates the impact of this ageing phenomena, in conjunction with device variability, on key MOSFET electrical parameters. A three-dimensional drift-diffusion approximation is adopted as the simulation approach in this work, with random dopant fluctuations—the dominant source of statistical variability—included in the simulations. The testbed device is a realistic 35 nm physical gate length n-channel conventional bulk MOSFET. 1000 microscopically different implementations of the transistor are simulated and subjected to charge-trapping at the oxide interface. The statistical simulations reveal relatively rare but very large threshold voltage shifts, with magnitudes over 3 times than that predicted by the conventional theoretical approach. The physical origin of this effect is investigated in terms of the electrostatic influences of the random dopants and trapped charges on the channel electron concentration. Simulations with progressively increased trapped charge densities—emulating the characteristic condition of BTI degradation—result in further variability of the threshold voltage distribution. Weak correlations of the order of 10-2 are found between the pre-degradation threshold voltage and post-degradation threshold voltage shift distributions. The importance of accounting for random dopant fluctuations in the simulations is emphasised in order to obtain qualitative agreement between simulation results and published experimental measurements. Finally, the information gained from these device-level physical simulations is integrated into statistical compact models, making the information available to circuit designers

    Low-frequency noise in downscaled silicon transistors: Trends, theory and practice

    Get PDF
    By the continuing downscaling of sub-micron transistors in the range of few to one deca-nanometers, we focus on the increasing relative level of the low-frequency noise in these devices. Large amount of published data and models are reviewed and summarized, in order to capture the state-of-the-art, and to observe that the 1/area scaling of low-frequency noise holds even for carbon nanotube devices, but the noise becomes too large in order to have fully deterministic devices with area less than 10nm×10nm. The low-frequency noise models are discussed from the point of view that the noise can be both intrinsic and coupled to the charge transport in the devices, which provided a coherent picture, and more interestingly, showed that the models converge each to other, despite the many issues that one can find for the physical origin of each model. Several derivations are made to explain crossovers in noise spectra, variable random telegraph amplitudes, duality between energy and distance of charge traps, behaviors and trends for figures of merit by device downscaling, practical constraints for micropower amplifiers and dependence of phase noise on the harmonics in the oscillation signal, uncertainty and techniques of averaging by noise characterization. We have also shown how the unavoidable statistical variations by fabrication is embedded in the devices as a spatial “frozen noise”, which also follows 1/area scaling law and limits the production yield, from one side, and from other side, the “frozen noise” contributes generically to temporal 1/f noise by randomly probing the embedded variations during device operation, owing to the purely statistical accumulation of variance that follows from cause-consequence principle, and irrespectively of the actual physical process. The accumulation of variance is known as statistics of “innovation variance”, which explains the nearly log-normal distributions in the values for low-frequency noise parameters gathered from different devices, bias and other conditions, thus, the origin of geometric averaging in low-frequency noise characterizations. At present, the many models generally coincide each with other, and what makes the difference, are the values, which, however, scatter prominently in nanodevices. Perhaps, one should make some changes in the approach to the low-frequency noise in electronic devices, to emphasize the “statistics behind the numbers”, because the general physical assumptions in each model always fail at some point by the device downscaling, but irrespectively of that, the statistics works, since the low-frequency noise scales consistently with the 1/area law
    corecore