1,655 research outputs found

    Synthesizing Normalized Faces from Facial Identity Features

    Full text link
    We present a method for synthesizing a frontal, neutral-expression image of a person's face given an input face photograph. This is achieved by learning to generate facial landmarks and textures from features extracted from a facial-recognition network. Unlike previous approaches, our encoding feature vector is largely invariant to lighting, pose, and facial expression. Exploiting this invariance, we train our decoder network using only frontal, neutral-expression photographs. Since these photographs are well aligned, we can decompose them into a sparse set of landmark points and aligned texture maps. The decoder then predicts landmarks and textures independently and combines them using a differentiable image warping operation. The resulting images can be used for a number of applications, such as analyzing facial attributes, exposure and white balance adjustment, or creating a 3-D avatar

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    Joint optimization of manifold learning and sparse representations for face and gesture analysis

    Get PDF
    Face and gesture understanding algorithms are powerful enablers in intelligent vision systems for surveillance, security, entertainment, and smart spaces. In the future, complex networks of sensors and cameras may disperse directions to lost tourists, perform directory lookups in the office lobby, or contact the proper authorities in case of an emergency. To be effective, these systems will need to embrace human subtleties while interacting with people in their natural conditions. Computer vision and machine learning techniques have recently become adept at solving face and gesture tasks using posed datasets in controlled conditions. However, spontaneous human behavior under unconstrained conditions, or in the wild, is more complex and is subject to considerable variability from one person to the next. Uncontrolled conditions such as lighting, resolution, noise, occlusions, pose, and temporal variations complicate the matter further. This thesis advances the field of face and gesture analysis by introducing a new machine learning framework based upon dimensionality reduction and sparse representations that is shown to be robust in posed as well as natural conditions. Dimensionality reduction methods take complex objects, such as facial images, and attempt to learn lower dimensional representations embedded in the higher dimensional data. These alternate feature spaces are computationally more efficient and often more discriminative. The performance of various dimensionality reduction methods on geometric and appearance based facial attributes are studied leading to robust facial pose and expression recognition models. The parsimonious nature of sparse representations (SR) has successfully been exploited for the development of highly accurate classifiers for various applications. Despite the successes of SR techniques, large dictionaries and high dimensional data can make these classifiers computationally demanding. Further, sparse classifiers are subject to the adverse effects of a phenomenon known as coefficient contamination, where for example variations in pose may affect identity and expression recognition. This thesis analyzes the interaction between dimensionality reduction and sparse representations to present a unified sparse representation classification framework that addresses both issues of computational complexity and coefficient contamination. Semi-supervised dimensionality reduction is shown to mitigate the coefficient contamination problems associated with SR classifiers. The combination of semi-supervised dimensionality reduction with SR systems forms the cornerstone for a new face and gesture framework called Manifold based Sparse Representations (MSR). MSR is shown to deliver state-of-the-art facial understanding capabilities. To demonstrate the applicability of MSR to new domains, MSR is expanded to include temporal dynamics. The joint optimization of dimensionality reduction and SRs for classification purposes is a relatively new field. The combination of both concepts into a single objective function produce a relation that is neither convex, nor directly solvable. This thesis studies this problem to introduce a new jointly optimized framework. This framework, termed LGE-KSVD, utilizes variants of Linear extension of Graph Embedding (LGE) along with modified K-SVD dictionary learning to jointly learn the dimensionality reduction matrix, sparse representation dictionary, sparse coefficients, and sparsity-based classifier. By injecting LGE concepts directly into the K-SVD learning procedure, this research removes the support constraints K-SVD imparts on dictionary element discovery. Results are shown for facial recognition, facial expression recognition, human activity analysis, and with the addition of a concept called active difference signatures, delivers robust gesture recognition from Kinect or similar depth cameras

    Adaptive face modelling for reconstructing 3D face shapes from single 2D images

    Get PDF
    Example-based statistical face models using principle component analysis (PCA) have been widely deployed for three-dimensional (3D) face reconstruction and face recognition. The two common factors that are generally concerned with such models are the size of the training dataset and the selection of different examples in the training set. The representational power (RP) of an example-based model is its capability to depict a new 3D face for a given 2D face image. The RP of the model can be increased by correspondingly increasing the number of training samples. In this contribution, a novel approach is proposed to increase the RP of the 3D face reconstruction model by deforming a set of examples in the training dataset. A PCA-based 3D face model is adapted for each new near frontal input face image to reconstruct the 3D face shape. Further an extended Tikhonov regularisation method has been

    Reconstructing 3D face shapes from single 2D images using an adaptive deformation model

    Get PDF
    The Representational Power (RP) of an example-based model is its capability to depict a new 3D face for a given 2D face image. In this contribution, a novel approach is proposed to increase the RP of the 3D reconstruction PCA-based model by deforming a set of examples in the training dataset. By adding these deformed samples together with the original training samples we gain more RP. A 3D PCA-based model is adapted for each new input face image by deforming 3D faces in the training data set. This adapted model is used to reconstruct the 3D face shape for the given input 2D near frontal face image. Our experimental results justify that the proposed adaptive model considerably improves the RP of the conventional PCA-based model

    Face Centered Image Analysis Using Saliency and Deep Learning Based Techniques

    Get PDF
    Image analysis starts with the purpose of configuring vision machines that can perceive like human to intelligently infer general principles and sense the surrounding situations from imagery. This dissertation studies the face centered image analysis as the core problem in high level computer vision research and addresses the problem by tackling three challenging subjects: Are there anything interesting in the image? If there is, what is/are that/they? If there is a person presenting, who is he/she? What kind of expression he/she is performing? Can we know his/her age? Answering these problems results in the saliency-based object detection, deep learning structured objects categorization and recognition, human facial landmark detection and multitask biometrics. To implement object detection, a three-level saliency detection based on the self-similarity technique (SMAP) is firstly proposed in the work. The first level of SMAP accommodates statistical methods to generate proto-background patches, followed by the second level that implements local contrast computation based on image self-similarity characteristics. At last, the spatial color distribution constraint is considered to realize the saliency detection. The outcome of the algorithm is a full resolution image with highlighted saliency objects and well-defined edges. In object recognition, the Adaptive Deconvolution Network (ADN) is implemented to categorize the objects extracted from saliency detection. To improve the system performance, L1/2 norm regularized ADN has been proposed and tested in different applications. The results demonstrate the efficiency and significance of the new structure. To fully understand the facial biometrics related activity contained in the image, the low rank matrix decomposition is introduced to help locate the landmark points on the face images. The natural extension of this work is beneficial in human facial expression recognition and facial feature parsing research. To facilitate the understanding of the detected facial image, the automatic facial image analysis becomes essential. We present a novel deeply learnt tree-structured face representation to uniformly model the human face with different semantic meanings. We show that the proposed feature yields unified representation in multi-task facial biometrics and the multi-task learning framework is applicable to many other computer vision tasks

    Adaptive Pca-Based Models To Reconstruct 3d Faces From Single 2d Images

    Get PDF
    Example-based statistical face models using Principle Component Analysis (PCA) have been widely used for 3D face reconstruction and face recognition. The main concern of this thesis is to improve the accuracy and the efficiency of the PCA-based 3D face shape reconstruction. More precisely, this thesis addresses the challenge of increasing the Representational Power (RP) of the PCA-based model in accordance with the encouraging results of the conducted empirical study. A limited set of training data is utilized towards enhancing the accuracy of 3D reconstruction. Concerning the empirical study, it examines the effect of phenomenal factors (i.e. size of the training set and the variation of the selected training examples) on the RP of 3D PCA-based face models. A regularized 3D face reconstruction algorithm has also been examined to find out how common factors such as the regularization matrix, the number of feature points, and the regularization parameter l affect the accuracy of the 3D face reconstruction based on the PCA model. Importantly, an adaptive PCA-based model is proposed to increase the RP of the 3D face reconstruction model by deforming a set of examples in the training dataset. By adding these deformed samples together with the original training samples, it has been shown that the improvement in the RP can be achieved. Comprehensive experimental validations have been carried out to demonstrate that the proposed model considerably improves the RP of the standard PCA-based model with reduced face shape reconstruction errors
    corecore