38 research outputs found

    The Use of Games and Crowdsourcing for the Fabrication-aware Design of Residential Buildings

    Get PDF
    State-of-the-art participatory design acknowledges the true, ill-defined nature of design problems, taking into account stakeholders' values and preferences. However, it overburdens the architect, who has to synthesize far more constraints into a one-of-a-kind design. Generative Design promises to equip architects with great power to standardize and systemize the design process. However, the common trap of generative design is trying to treat architecture simply as a tame problem. In this work, I investigate the use of games and crowdsourcing in architecture through two sets of explorative questions. First, if everyone can participate in the network-enabled creation of the built environment, what role will they play? And what tools will they need to enable them? And second, if anyone can use digital fabrication to build any building, how will we design it? What design paradigms will govern this process? I present a map of design paradigms that lie at the intersections of Participatory Design, Generative Design, Game Design, and Crowd Wisdom. In four case studies, I explore techniques to employ the practices from the four fields in the service of architecture. Generative Design can lower the difficulty of the challenge to design by automating a large portion of the work. A newly formulated, unified taxonomy of generative design across the disciplines of architecture, computer science, and computer games builds the base for the use of algorithms in the case studies. The work introduces Playable Voxel-Shape Grammars, a new type of generative technique. It enables Game Design to guide participants through a series of challenges, effectively increasing their skills by helping them understand the underlying principles of the design task at hand. The use of crowdsourcing in architecture can mean thousands of architects creating content for a generative design system, to expand and open up its design space. Crowdsourcing can also be about millions of people online creating designs that an architect or a homeowner can refer to increase their understanding of the complex issues at hand in a given design project and for better decision making. At the same time, game design in architecture helps find the balance between algorithmically exploring pre-defined design alternatives and open-ended, free creativity. The research reveals a layered structure of entry points for crowd-contributed content as well as the granular nature of authorship among four different roles: non-expert stakeholders, architects, the crowd, and the tool-makers

    Transdisciplinary AI Observatory -- Retrospective Analyses and Future-Oriented Contradistinctions

    Get PDF
    In the last years, AI safety gained international recognition in the light of heterogeneous safety-critical and ethical issues that risk overshadowing the broad beneficial impacts of AI. In this context, the implementation of AI observatory endeavors represents one key research direction. This paper motivates the need for an inherently transdisciplinary AI observatory approach integrating diverse retrospective and counterfactual views. We delineate aims and limitations while providing hands-on-advice utilizing concrete practical examples. Distinguishing between unintentionally and intentionally triggered AI risks with diverse socio-psycho-technological impacts, we exemplify a retrospective descriptive analysis followed by a retrospective counterfactual risk analysis. Building on these AI observatory tools, we present near-term transdisciplinary guidelines for AI safety. As further contribution, we discuss differentiated and tailored long-term directions through the lens of two disparate modern AI safety paradigms. For simplicity, we refer to these two different paradigms with the terms artificial stupidity (AS) and eternal creativity (EC) respectively. While both AS and EC acknowledge the need for a hybrid cognitive-affective approach to AI safety and overlap with regard to many short-term considerations, they differ fundamentally in the nature of multiple envisaged long-term solution patterns. By compiling relevant underlying contradistinctions, we aim to provide future-oriented incentives for constructive dialectics in practical and theoretical AI safety research

    PLATFORM-DRIVEN CROWDSOURCED MANUFACTURING FOR MANUFACTURING AS A SERVICE

    Get PDF
    Platform-driven crowdsourced manufacturing is an emerging manufacturing paradigm to instantiate the adoption of the open business model in the context of achieving Manufacturing-as-a-Service (MaaS). It has attracted attention from both industries and academia as a powerful way of searching for manufacturing solutions extensively in a smart manufacturing era. In this regard, this work examines the origination and evolution of the open business model and highlights the trends towards platform-driven crowdsourced manufacturing as a solution for MaaS. Platform-driven crowdsourced manufacturing has a full function of value capturing, creation, and delivery approach, which is fulfilled by the cooperation among manufacturers, open innovators, and platforms. The platform-driven crowdsourced manufacturing workflow is proposed to organize these three decision agents by specifying the domains and interactions, following a functional, behavioral, and structural mapping model. A MaaS reference model is proposed to outline the critical functions and inter-relationships. A series of quantitative, qualitative, and computational solutions are developed for fulfilling the outlined functions. The case studies demonstrate the proposed methodologies and can pace the way towards a service-oriented product fulfillment process. This dissertation initially proposes a manufacturing theory and decision models by integrating manufacturer crowds through a cyber platform. This dissertation reveals the elementary conceptual framework based on stakeholder analysis, including dichotomy analysis of industrial applicability, decision agent identification, workflow, and holistic framework of platform-driven crowdsourced manufacturing. Three stakeholders require three essential service fields, and their cooperation requires an information service system as a kernel. These essential functions include contracting evaluation services for open innovators, manufacturers' task execution services, and platforms' management services. This research tackles these research challenges to provide a technology implementation roadmap and transition guidebook for industries towards crowdsourcing.Ph.D

    Multi-objective Search-based Mobile Testing

    Get PDF
    Despite the tremendous popularity of mobile applications, mobile testing still relies heavily on manual testing. This thesis presents mobile test automation approaches based on multi-objective search. We introduce three approaches: Sapienz (for native Android app testing), Octopuz (for hybrid/web JavaScript app testing) and Polariz (for using crowdsourcing to support search-based mobile testing). These three approaches represent the primary scientific and technical contributions of the thesis. Since crowdsourcing is, itself, an emerging research area, and less well understood than search-based software engineering, the thesis also provides the first comprehensive survey on the use of crowdsourcing in software testing (in particular) and in software engineering (more generally). This survey represents a secondary contribution. Sapienz is an approach to Android testing that uses multi-objective search-based testing to automatically explore and optimise test sequences, minimising their length, while simultaneously maximising their coverage and fault revelation. The results of empirical studies demonstrate that Sapienz significantly outperforms both the state-of-the-art technique Dynodroid and the widely-used tool, Android Monkey, on all three objectives. When applied to the top 1,000 Google Play apps, Sapienz found 558 unique, previously unknown crashes. Octopuz reuses the Sapienz multi-objective search approach for automated JavaScript testing, aiming to investigate whether it replicates the Sapienz’ success on JavaScript testing. Experimental results on 10 real-world JavaScript apps provide evidence that Octopuz significantly outperforms the state of the art (and current state of practice) in automated JavaScript testing. Polariz is an approach that combines human (crowd) intelligence with machine (computational search) intelligence for mobile testing. It uses a platform that enables crowdsourced mobile testing from any source of app, via any terminal client, and by any crowd of workers. It generates replicable test scripts based on manual test traces produced by the crowd workforce, and automatically extracts from these test traces, motif events that can be used to improve search-based mobile testing approaches such as Sapienz

    Probabilistic latent variable models for knowledge discovery and optimization

    Get PDF
    I conduct a systematic study of probabilistic latent variable models (PLVMs) with applications to knowledge discovery and optimization. Probabilistic modeling is a principled means to gain insight of data. By assuming that the observed data are generated from a distribution, we can estimate its density, or the statistics of our interest, by either Maximum Likelihood Estimation or Bayesian inference, depending on whether there is a prior distribution for the parameters of the assumed data distribution. One of the primary goals of various machine learning/data mining models is to reveal the underlying knowledge of observed data. A common practice is to introduce latent variables, which are modeled together with the observations. Such latent variables compute, for example, the class assignments (labels), the cluster membership, as well as other unobserved measurements of the data. Besides, proper exploitation of latent variables facilities the optimization itself, which leads to computationally efficient inference algorithms. In this thesis, I describe a range of applications where latent variables can be leveraged for knowledge discovery and efficient optimization. Works in this thesis demonstrate that PLVMs are a powerful tool for modeling incomplete observations. Through incorporating latent variables and assuming that the observations such as citations, pairwise preferences as well as text are generated following tractable distributions parametrized by the latent variables, PLVMs are flexible and effective to discover knowledge in data mining problems, where the knowledge is mathematically modelled as continuous or discrete values, distributions or uncertainty. In addition, I also explore PLVMs for deriving efficient algorithms. It has been shown that latent variables can be employed as a means for model reduction and facilitates the computation/sampling of intractable distributions. Our results lead to algorithms which take advantage of latent variables in probabilistic models. We conduct experiments against state-of-the-art models and empirical evaluation shows that our proposed approaches improve both learning performance and computational efficiency

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Tätigkeitsbericht 2014-2016

    Get PDF

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways
    corecore