16 research outputs found

    Dynamic Voltage Scaling for Energy- Constrained Real-Time Systems

    Get PDF
    The problem of reducing energy consumption is dominating the design of several real-time systems. The Dynamic Voltage Scaling (DVS) technique, provided by most microprocessors, allow to balance computational speed versus energy consumption. We present some novel energy-aware scheduling algorithms that allow to expoit this technique while meeting real-time constraints. In particular, we present the GRUB-PA algorithm which, unlike most existing algorithms, allows to reduce energy consumption on real-time systems consisting of any kind of task. We also present a working implementation of the algorithm on Linux

    System Support for Distributed Energy Management in Modular Operating Systems

    Get PDF
    This thesis proposes a novel approach for managing energy in modular operating systems. Our approach enables energy awareness if the resource-management subsystem is distributed among multiple operating-system modules. There are four key achievements: a model for modularization-aware energy management; the support for exposed and distributed energy accounting and allocation; the use of different energy-management interaction protocols; and, finally, the support virtualization of energy effects

    Memory region: a system abstraction for managing the complex memory structures of multicore platforms

    Get PDF
    The performance of modern many-core systems depends on the effective use of their complex cache and memory structures, and this will likely become more pronounced with the impending arrival of on-chip 3D stacked and non-volatile off-chip byte-addressable memory. Yet to date, operating systems have not treated memory as a first class schedulable resource, embracing memory heterogeneity. This dissertation presents a new software abstraction, called ‘memory region’, which denotes the current set of physical memory pages actively used by workloads. Using this abstraction, memory resources can be scheduled for applications to fully exploit a platform's underlying cache and memory system, thereby gaining improved performance and predictability in execution, particularly for the consolidated workloads seen in virtualized and cloud computing infrastructures. The abstraction's implementation in the Xen hypervisor involves the run-time detection of memory regions, the scheduled mapping of these regions to caches to match performance goals, and maintaining region-to-cache mappings using per-cache page tables. This dissertation makes the following specific contributions. First, its region scheduling method proposes that the location of memory blocks rather than CPU utilization is the principal determinant where workloads are run. It proposes a new scheduling method, the region scheduling that the location of memory blocks determines where the workloads are run. Second, treating memory blocks as first-class resources, new methods for efficient cache management are shown to improve application performance as well as the performance of certain operating system functions. Third, explicit memory scheduling makes it possible to disaggregate operating systems, without the need to change OS sources and with only small markups of target guest OS functionality. With this method, OS functions can be mapped to specific desired platform components, such as file system confined to running on specific cores and using only certain memory resources designated for its use. This can improve performance for applications heavily dependent on certain OS functions, by dynamically providing those functions with the resources needed for their current use, and it can prevent performance-critical application functionality from being needlessly perturbed by OS functions used for other purposes or by other jobs. Fourth, extensions of region scheduling can also help applications deal with the heterogeneous memory resources present in future systems, including on-chip stacked DRAM and NUMA or even NVRAM memory modules. More generally, regions scheduling is shown to apply to memory structures with well-defined differences in memory access latencies.Ph.D

    High-Performance and Time-Predictable Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systems The work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things.info:eu-repo/semantics/publishedVersio
    corecore