4 research outputs found

    Effect of Binding Pose and Modeled Structures on SVMGen and GlideScore Enrichment of Chemical Libraries

    Get PDF
    Virtual screening consists of docking libraries of small molecules to a target protein followed by rank-ordering of the resulting structures using scoring functions. The ability of scoring methods to distinguish between actives and inactives depends on several factors that include the accuracy of the binding pose during the docking step and the quality of the three-dimensional structure of the target. Here, we build on our previous work to introduce a new scoring approach (SVMGen) that uses machine learning trained with features from statistical pair potentials obtained from three-dimensional crystal structures. We use SVMGen and GlideScore to explore how enrichment or rank-ordering is affected by binding pose accuracy. To that end, we create a validation set that consists strictly of proteins whose crystal structure was solved in complex with their inhibitors. For the rank-ordering studies, we use crystal structures from PDBbind along with corresponding binding affinity data provided in the database. In addition to binding pose, we investigate the effect of using modeled structures for the target on the enrichment performance of SVMGen and GlideScore. To accomplish this, we generated homology models for protein kinases in DUD-E for which crystal structures are available to enable comparison of enrichment between modeled and crystal structure. We also generate homology models for kinases in SARfari for which there are many known small-molecule inhibitors but no known crystal structure. These models are used to assess the ability of SVMGen and GlideScore to distinguish between actives and decoys. We focus our work on protein kinases considering the wealth of structural and binding affinity data that exists for this family of proteins

    Structure-Based Target-Specific Screening Leads to Small-Molecule CaMKII Inhibitors

    Get PDF
    Target-specific scoring methods are more commonly used to identify small-molecule inhibitors among compounds docked to a target of interest. Top candidates that emerge from these methods have rarely been tested for activity and specificity across a family of proteins. In this study we docked a chemical library into CaMKIIδ, a member of the Ca2+ /calmodulin (CaM)-dependent protein kinase (CaMK) family, and re-scored the resulting protein-compound structures using Support Vector Machine SPecific (SVMSP), a target-specific method that we developed previously. Among the 35 selected candidates, three hits were identified, such as quinazoline compound 1 (KIN-1; N4-[7-chloro-2-[(E)-styryl]quinazolin-4-yl]-N1,N1-diethylpentane-1,4-diamine), which was found to inhibit CaMKIIδ kinase activity at single-digit micromolar IC50 . Activity across the kinome was assessed by profiling analogues of 1, namely 6 (KIN-236; N4-[7-chloro-2-[(E)-2-(2-chloro-4,5-dimethoxyphenyl)vinyl]quinazolin-4-yl]-N1,N1-diethylpentane-1,4-diamine), and an analogue of hit compound 2 (KIN-15; 2-[4-[(E)-[(5-bromobenzofuran-2-carbonyl)hydrazono]methyl]-2-chloro-6-methoxyphenoxy]acetic acid), namely 14 (KIN-332; N-[(E)-[4-(2-anilino-2-oxoethoxy)-3-chlorophenyl]methyleneamino]benzofuran-2-carboxamide), against 337 kinases. Interestingly, for compound 6, CaMKIIδ and homologue CaMKIIγ were among the top ten targets. Among the top 25 targets of 6, IC50 values ranged from 5 to 22 μm. Compound 14 was found to be not specific toward CaMKII kinases, but it does inhibit two kinases with sub-micromolar IC50 values among the top 25. Derivatives of 1 were tested against several kinases including several members of the CaMK family. These data afforded a limited structure-activity relationship study. Molecular dynamics simulations with explicit solvent followed by end-point MM-GBSA free-energy calculations revealed strong engagement of specific residues within the ATP binding pocket, and also changes in the dynamics as a result of binding. This work suggests that target-specific scoring approaches such as SVMSP may hold promise for the identification of small-molecule kinase inhibitors that exhibit some level of specificity toward the target of interest across a large number of proteins

    Computational Methods to Identify and Target Druggable Binding Sites at Protein-Protein Interactions in the Human Proteome

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Protein-protein interactions are fundamental in cell signaling and cancer progression. An increasing prevalent idea in cancer therapy is the development of small molecules to disrupt protein-protein interactions. Small molecules impart their action by binding to pockets on the protein surface of their physiological target. At protein-protein interactions, these pockets are often too large and tight to be disrupted by conventional design techniques. Residues that contribute a disproportionate amount of energy at these interfaces are known as hot spots. The successful disruption of protein-protein interactions with small molecules is attributed to the ability of small molecules to mimic and engage these hot spots. Here, the role of hot spots is explored in existing inhibitors and compared with the native protein ligand to explore how hot spot residues can be leveraged in protein-protein interactions. Few studies have explored the use of interface residues for the identification of hit compounds from structure-based virtual screening. The tight uPAR•uPA interaction offers a platform to test methods that leverage hot spots on both the protein receptor and ligand. A method is described that enriches for small molecules that both engage hot spots on the protein receptor uPAR and mimic hot spots on its protein ligand uPA. In addition, differences in chemical diversity in mimicking ligand hot spots is explored. In addition to uPAR•uPA, there are additional opportunities at unperturbed protein-protein interactions implicated in cancer. Projects such as TCGA, which systematically catalog the hallmarks of cancer across multiple platforms, provide opportunities to identify novel protein-protein interactions that are paramount to cancer progression. To that end, a census of cancer-specific binding sites in the human proteome are identified to provide opportunities for drug discovery at the system level. Finally, tumor genomic, protein-protein interaction, and protein structural data is integrated to create chemogenomic libraries for phenotypic screening to uncover novel GBM targets and generate starting points for the development of GBM therapeutic agents.2020-10-0
    corecore