80 research outputs found

    Enhanced indoor location tracking through body shadowing compensation

    Get PDF
    This paper presents a radio frequency (RF)-based location tracking system that improves its performance by eliminating the shadowing caused by the human body of the user being tracked. The presence of such a user will influence the RF signal paths between a body-worn node and the receiving nodes. This influence will vary with the user's location and orientation and, as a result, will deteriorate the performance regarding location tracking. By using multiple mobile nodes, placed on different parts of a human body, we exploit the fact that the combination of multiple measured signal strengths will show less variation caused by the user's body. Another method is to compensate explicitly for the influence of the body by using the user's orientation toward the fixed infrastructure nodes. Both approaches can be independently combined and reduce the influence caused by body shadowing, hereby improving the tracking accuracy. The overall system performance is extensively verified on a building-wide testbed for sensor experiments. The results show a significant improvement in tracking accuracy. The total improvement in mean accuracy is 38.1% when using three mobile nodes instead of one and simultaneously compensating for the user's orientation

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    LF Indoor Location and Identification System

    Full text link

    Location estimation in smart homes setting with RFID systems

    Get PDF
    Indoor localisation technologies are a core component of Smart Homes. Many applications within Smart Homes benefit from localisation technologies to determine the locations of things, objects and people. The tremendous characteristics of the Radio Frequency Identification (RFID) systems have become one of the enabler technologies in the Internet of Things (IOT) that connect objects and things wirelessly. RFID is a promising technology in indoor positioning that not only uniquely identifies entities but also locates affixed RFID tags on objects or subjects in stationary and real-time. The rapid advancement in RFID-based systems has sparked the interest of researchers in Smart Homes to employ RFID technologies and potentials to assist with optimising (non-) pervasive healthcare systems in automated homes. In this research localisation techniques and enabled positioning sensors are investigated. Passive RFID sensors are used to localise passive tags that are affixed to Smart Home objects and track the movement of individuals in stationary and real-time settings. In this study, we develop an affordable passive localisation platform using inexpensive passive RFID sensors. To fillful this aim, a passive localisation framework using minimum tracking resources (RFID sensors) has been designed. A localisation prototype and localisation application that examined the affixed RFID tag on objects to evaluate our proposed locaisation framework was then developed. Localising algorithms were utilised to achieve enhanced accuracy of localising one particular passive tag which that affixed to target objects. This thesis uses a general enough approach so that it could be applied more widely to other applications in addition to Health Smart Homes. A passive RFID localising framework is designed and developed through systematic procedures. A localising platform is built to test the proposed framework, along with developing a RFID tracking application using Java programming language and further data analysis in MATLAB. This project applies localisation procedures and evaluates them experimentally. The experimental study positively confirms that our proposed localisation framework is capable of enhancing the accuracy of the location of the tracked individual. The low-cost design uses only one passive RFID target tag, one RFID reader and three to four antennas

    Enhanced Indoor Location Tracking Through Body Shadowing Compensation

    Full text link

    Novel Models and Algorithms Paving the Road towards RF Convergence

    Get PDF
    After decades of rapid evolution in electronics and signal processing, the technologies in communications, positioning, and sensing have achieved considerable progress. Our daily lives are fundamentally changed and substantially defined by the advancement in these technologies. However, the trend is challenged by a well-established fact that the spectrum resources, like other natural resources, are gradually becoming scarce. This thesis carries out research in the field of RF convergence, which is regarded as a mean to intelligently exploit spectrum resources, e.g., by finding novel methods of optimising and sharing tasks between communication, positioning, and sensing. The work has been done to closely explore opportunities for supporting the RF convergence. As a supplement for the electromagnetic waves propagation near the ground, ground-to-air channel models are first proposed and analysed, by incorporating the atmospheric effects when the altitude of aerial users is higher than 300 m. The status quos of techniques in communications, positioning, and sensing are separately reviewed, and our newly developments in each field are briefly introduced. For instance, we study the MIMO techniques for interference mitigation on aerial users; we construct the reflected echoes, i.e., the radar receiving, for the joint sensing and communications system. The availability of GNSS signals is of vital importance to the GNSS-enabled services, particularly the life-critical applications. To enhance the resilience of GNSS receivers, the RF fingerprinting based anti-spoofing techniques are also proposed and discussed. Such a guarantee on GNSS and ubiquitous GNSS services drive the utilisation of location information, also needed for communications, hence the proposal of a location-based beamforming algorithm. The superposition coding scheme, as an attempt of the waveform design, is also brought up for the joint sensing and communications. The RF convergence will come with many facets: the joint sensing and communications promotes an efficient use of frequency spectrum; the positioning-aided communications encourage the cooperation between systems; the availability of robust global positioning systems benefits the applications relying on the GNSS service

    Angle of Arrival Estimation Utilising Frequency Diverse Radio Antenna Arrays

    Get PDF
    The purpose of this research is to investigate a novel way of combining carrier signals that are transmitted successively over Multiple Frequencies (MF) and traditional metrics to improve AoA estimation. Every signal contains three metrics, amplitude, phase, and frequency. To achieve localisation, current systems utilise the metrics of amplitude (also known as Received Signal Strength (RSS)) and phase that resolves the AoA. However, the metric of frequency is mostly used with Orthogonal Frequency-Division Multiplexing (OFDM) to increase the number of RSS and AoA metrics, which is not optimal. This research answers two questions. Can the use of MF improve AoA estimation? Also, how can MF and traditional metrics be combined for AoA estimation? The aim is to prove that the metric of frequency can be utilised more optimally. Therefore, measurements of RSS and AoA are performed in different environments for MF. To perform these measurements, ten frequency diverse Software Defined Radios (SDRs) are employed. A novel technique to time/frequency synchronise the SDRs is developed and presented. Moreover, a ten element Uniform Linear Array (ULA) is designed, simulated and manufactured. The outcomes of this research are two novel algorithms for the MF AoA estimation of a carrier transmitter. Findings of the first algorithm show that the use of MF with the RSS metric performs equally with current systems that have a higher cost and complexity. The second algorithm that utilises MF with the AoA metric demonstrates a significant reduction in the AoA estimation error, compared to current systems. Specifically, for 50\% of the measured cases the AoA estimation error is reduced by 3.7 degrees, while for 95\% of the measured cases the AoA estimation error is reduced by 27 degrees. Hence, this research proves that MF with traditional metrics can reduce system complexity and greatly improve AoA estimation

    Location tracking in indoor and outdoor environments based on the viterbi principle

    Get PDF

    Moisture estimation for precision agriculture through RF sensing

    Get PDF
    Convenient, non-obtrusive, low-cost, and accurate sensing of fruit moisture content is crucial for the scientific studies of Pomology and Viticulture and their associated agriculture. It can provide early indicators of yield estimation and crop health as well as providing data for food production and precision farming systems. With a focus on grapes, we introduce SING, a scheme that senses grape moisture content by utilizing RF signals but without physical contact with the fruit. In this thesis, we extend the investigation of the theoretical relationship between the dielectric properties and the moisture content of agricultural products to establish a sensing model in the 5 GHz band. To make the work practical, we are first to measure the dielectric properties of grape bunches (not individually as that would be destructive), presenting a unique measurement challenge as internal grapes are hidden. In doing so, we demonstrate that our technique precisely estimates moisture content to a high degree of accuracy (90%). Current RF sensing models to estimate moisture are destructive; they require samples to be constrained in containers. Our work is first to dispense with such impracticalities, and, without contact with the object, accurately measures non-uniform grape clusters in open space. We demonstrate that SING is superior to existing work in its ability to accurately measure the dielectric properties of non-uniform fruit objects and test this through both lab-based experimentation and preliminary outdoor vineyard tests. We also examine the transferability of SING’s approach to real-world scenarios.Open Acces
    • …
    corecore