3,569 research outputs found

    An adaptive neuro-fuzzy propagation model for LoRaWAN

    Get PDF
    This article proposes an adaptive-network-based fuzzy inference system (ANFIS) model for accurate estimation of signal propagation using LoRaWAN. By using ANFIS, the basic knowledge of propagation is embedded into the proposed model. This reduces the training complexity of artificial neural network (ANN)-based models. Therefore, the size of the training dataset is reduced by 70% compared to an ANN model. The proposed model consists of an efficient clustering method to identify the optimum number of the fuzzy nodes to avoid overfitting, and a hybrid training algorithm to train and optimize the ANFIS parameters. Finally, the proposed model is benchmarked with extensive practical data, where superior accuracy is achieved compared to deterministic models, and better generalization is attained compared to ANN models. The proposed model outperforms the nondeterministic models in terms of accuracy, has the flexibility to account for new modeling parameters, is easier to use as it does not require a model for propagation environment, is resistant to data collection inaccuracies and uncertain environmental information, has excellent generalization capability, and features a knowledge-based implementation that alleviates the training process. This work will facilitate network planning and propagation prediction in complex scenarios

    Artificial neural networks for location estimation and co-cannel interference suppression in cellular networks

    Get PDF
    This thesis reports on the application of artificial neural networks to two important problems encountered in cellular communications, namely, location estimation and co-channel interference suppression. The prediction of a mobile location using propagation path loss (signal strength) is a very difficult and complex task. Several techniques have been proposed recently mostly based on linearized, geometrical and maximum likelihood methods. An alternative approach based on artificial neural networks is proposed in this thesis which offers the advantages of increased flexibility to adapt to different environments and high speed parallel processing. Location estimation provides users of cellular telephones with information about their location. Some of the existing location estimation techniques such as those used in GPS satellite navigation systems require non-standard features, either from the cellular phone or the cellular network. However, it is possible to use the existing GSM technology for location estimation by taking advantage of the signals transmitted between the phone and the network. This thesis proposes the application of neural networks to predict the location coordinates from signal strength data. New multi-layered perceptron and radial basis function based neural networks are employed for the prediction of mobile locations using signal strength measurements in a simulated COST-231 metropolitan environment. In addition, initial preliminary results using limited available real signal-strength measurements in a metropolitan environment are also reported comparing the performance of the neural predictors with a conventional linear technique. The results indicate that the neural predictors can be trained to provide a near perfect mapping using signal strength measurements from two or more base stations. The second application of neural networks addressed in this thesis, is concerned with adaptive equalization, which is known to be an important technique for combating distortion and Inter-Symbol Interference (ISI) in digital communication channels. However, many communication systems are also impaired by what is known as co-channel interference (CCI). Many digital communications systems such as digital cellular radio (DCR) and dual polarized micro-wave radio, for example, employ frequency re-usage and often exhibit performance limitation due to co-channel interference. The degradation in performance due to CCI is more severe than due to ISI. Therefore, simple and effective interference suppression techniques are required to mitigate the interference for a high-quality signal reception. The current work briefly reviews the application of neural network based non-linear adaptive equalizers to the problem of combating co-channel interference, without a priori knowledge of the channel or co-channel orders. A realistic co-channel system is used as a case study to demonstrate the superior equalization capability of the functional-link neural network based Decision Feedback Equalizer (DFE) compared to other conventional linear and neural network based non-linear adaptive equalizers.This project was funded by Solectron (Scotland) Ltd

    Experimental evaluation of machine learning methods for robust received signal strength-based visible light positioning

    Get PDF
    In this work, the use of Machine Learning methods for robust Received Signal Strength (RSS)-based Visible Light Positioning (VLP) is experimentally evaluated. The performance of Multilayer Perceptron (MLP) models and Gaussian processes (GP) is investigated when using relative RSS input features. The experimental set-up for the RSS-based VLP technology uses light-emitting diodes (LEDs) transmitting intensity modulated light and a single photodiode (PD) as a receiver. The experiments focus on achieving robustness to cope with unknown received signal strength modifications over time. Therefore, several datasets were collected, where per dataset either the LEDs transmitting power is modified or the PD aperture is partly obfuscated by dust particles. Two relative RSS schemes are investigated. The first scheme uses the maximum received light intensity to normalize the received RSS vector, while the second approach obtains RSS ratios by combining all possible unique pairs of received intensities. The Machine Learning (ML) methods are compared to a relative multilateration implementation. It is demonstrated that the adopted MLP and GP models exhibit superior performance and higher robustness when compared to the multilateration strategies. Furthermore, when comparing the investigated ML models, the GP model is proven to be more robust than the MLP for the considered scenarios

    Data-efficient Gaussian process regression for accurate visible light positioning

    No full text
    In the field of indoor localization systems, Received Signal Strength (RSS) based Visible Light Positioning (VLP) has gained increased attention due to the dual functionality of lighting and localization. Previously geometrical models have been used to determine the position of a mobile entity, however these are unsuited when dealing with tilted surfaces and non-Lambertian sources. For this reason, machine learning techniques like Multi Layer Perceptrons (MLPs) have been considered recently. In this work, Gaussian Processes (GPs) are introduced in the context of RSS-based VLP, since they have proven to work well when using small, noisy datasets for different applications. Their performance is evaluated using both simulated data with a small transmitter tilt tolerance and measurements. It is demonstrated that the GP model outperforms both the multilateration approach and the MLP approach for the simulations and measurements data

    Intelligent Defined LoS: Enabling Seamless Coverage with Human Mobility Prediction

    Get PDF
    Despite all the benefits 60 GHz networks bring about, such as high network bandwidth, effective data rates, etc., one of its main application scenarios, Line-of- Sight (LOS) communications, still has troubles in actual indoor environments due to its high directionality. Traditional beam training methods are inaccurate and time-wasting, leading to unstable and inefficient wireless networks. Therefore, in this paper, we attempt to address this problem from a new aspect, i.e., assisting the signal adaptation with human mobility prediction. A state-of-the-art long short-term memory (LSTM) model is adopted to analyze the past trajectories and predict the future position, which can serve as an important reference for the transmitters to proactively adjust their beams and provide seamless coverage. In addition, we also design an algorithm to optimize the beam selection problem and improve the network quality. To the best of our knowledge, this is the first work in the field to use deep learning models for the beam selection problem. Simulations demonstrate that our approach is robust and efficient, and outperforms the state-of-the-art in several related tasks

    Machine Learning for Metasurfaces Design and Their Applications

    Full text link
    Metasurfaces (MTSs) are increasingly emerging as enabling technologies to meet the demands for multi-functional, small form-factor, efficient, reconfigurable, tunable, and low-cost radio-frequency (RF) components because of their ability to manipulate waves in a sub-wavelength thickness through modified boundary conditions. They enable the design of reconfigurable intelligent surfaces (RISs) for adaptable wireless channels and smart radio environments, wherein the inherently stochastic nature of the wireless environment is transformed into a programmable propagation channel. In particular, space-limited RF applications, such as communications and radar, that have strict radiation requirements are currently being investigated for potential RIS deployment. The RIS comprises sub-wavelength units or meta-atoms, which are independently controlled and whose geometry and material determine the spectral response of the RIS. Conventionally, designing RIS to yield the desired EM response requires trial and error by iteratively investigating a large possibility of various geometries and materials through thousands of full-wave EM simulations. In this context, machine/deep learning (ML/DL) techniques are proving critical in reducing the computational cost and time of RIS inverse design. Instead of explicitly solving Maxwell's equations, DL models learn physics-based relationships through supervised training data. The ML/DL techniques also aid in RIS deployment for numerous wireless applications, which requires dealing with multiple channel links between the base station (BS) and the users. As a result, the BS and RIS beamformers require a joint design, wherein the RIS elements must be rapidly reconfigured. This chapter provides a synopsis of DL techniques for both inverse RIS design and RIS-assisted wireless systems.Comment: Book chapter, 70 pages, 12 figures, 2 tables. arXiv admin note: substantial text overlap with arXiv:2101.09131, arXiv:2009.0254
    • …
    corecore