3,520 research outputs found

    Leveraging the Science of Geographic Information Systems

    Get PDF
    The Center for Geographic Information Science (CGISc) at the University of North Carolina Greensboro (UNCG) was established in the Summer of 2006. CGISc is an educational research entity that relies on the use of GIS and the science of geographic information to conduct research on human and natural phenomena distributed on the Earth’s surface. CGISc welcomes interdisciplinary collaboration, and emphasizes the development of public-private sector partnerships. CGISc also places a high priority on research that involves students. This paper first provides an overview of the CGISc. This section is followed by a discussion on the fundamental approach to conducting geographic research using GIS. The paper concludes with several significant projects and a discussion on future directions

    A review on electromagnetics (EM) exposure measurement techniques from base station

    Get PDF
    EM exposure in the range of non-ionizing radiations (NIR) which falls in the radio frequency up to 3GHz is mainly sourced from mobile phone base stations, broadcast towers and radar facilities. This reviews based on previous researcher obtained results and methods in order to determine the best technique to measure the exposure. Moreover, the estimation of exposure levels by considering the specification of the antennas installed and area of the base stations itself was also reviewed. It was found that numerous study of NIR exposure level has been conducted in other countries, while Malaysia has become aware of the importance. Most of the studies used field meter to carry out the measurement, and the exposure level obtained were far lower than the limit recommended by World Health Organization (WHO).Keywords: electromagnetic exposure level, base station, electric field strength, geographical information syste

    HopScotch - a low-power renewable energy base station network for rural broadband access

    Get PDF
    The provision of adequate broadband access to communities in sparsely populated rural areas has in the past been severely restricted. In this paper, we present a wireless broadband access test bed running in the Scottish Highlands and Islands which is based on a relay network of low-power base stations. Base stations are powered by a combination of renewable sources creating a low cost and scalable solution suitable for community ownership. The use of the 5~GHz bands allows the network to offer large data rates and the testing of ultra high frequency ``white space'' bands allow expansive coverage whilst reducing the number of base stations or required transmission power. We argue that the reliance on renewable power and the intelligent use of frequency bands makes this approach an economic green radio technology which can address the problem of rural broadband access

    802.11b Wireless Network Visualization and Radiowave Propagation Modeling

    Get PDF
    This paper outlines the methods of creating detailed coverage maps of 802.11b networks, with an emphasis on minimizing the expenses and time involved. The goal of this work is to develop and present a streamlined, reproducible approach to wireless visualization as well as techniques for predicting coverage area before conducting network installations. After evaluating these coverage maps, a repeated series of field measurements will be checked against interpolated values in order to improve techniques for extrapolation of data for unsampled regions. If successful, these extrapolation techniques will provide additional guidelines for, and assist modeling of, new wireless network installations. However, this paper demonstrates that due to the microcellular structure of indoor/outdoor 802.11b networks, accurate interpolation and propagation prediction techniques do not exist independent of highly specific location models. In lieu of the creation of extensive simulation environments, best practice guidelines for municipal wireless network planning and deployment are presented

    The FLASH project: using lightning data to better understand and predict flash floods

    Get PDF
    The FLASH project was implemented from 2006 to 2010 underthe EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in orderto understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intenseconvection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educationaloutreach through our website http://flashproject.orgsupplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be preventedas the climate changes, long-range regional lightning networks can supply valuable data, in realtime, for warningend-users and stakeholders of imminent intense rainfall and possible flash floods

    Guidance note on the application of coastal monitoring for small island developing states : Part of the NOC-led project “Climate Change Impact Assessment: Ocean Modelling and Monitoring for the Caribbean CME states”, 2017-2020; under the Commonwealth Marine Economies (CME) Programme in the Caribbean.

    Get PDF
    Small Island Developing States (SIDS) are a diverse group of 51 countries and territories vulnerable to human-induced climate change, due to factors including their small size, large exclusive economic zones and limited resources. They generally have insufficient critical mass in scientific research and technical capability to carry out coastal monitoring campaigns from scratch and limited access to data. This guidance report will go some way to addressing these issues by providing information on monitoring methods and signposting data sources. Coastal monitoring, the collection, analysis and storage of information about coastal processes and the response of the coastline, provides information on how the coast changes over time, after storm events and due to the effects of human intervention. Accurate and repeatable observational data is essential to informed decision making, particularly in light of climate change, the impacts of which are already being felt. In this report, we review the need for monitoring and the development of appropriate strategies, which include good baseline data and long-term repeatable data collection at appropriate timescales. We identify some of the methods for collection of in situ data, such as tide gauges and topographic survey, and highlight where resources in terms of data and equipment are currently available. We then go on to explore the range of remote sensing methods available from satellites to smart phone photography. Both in situ and remotely sensed data are important as inputs into models, which in turn feed in to visualisations for decision-making. We review the availability of a wide range of datasets, including details of how to access satellite data and links to international and regional data banks. The report concludes with information on the use of Geographical Information Systems (GIS) and good practice in managing data

    An analysis of specialist and non-specialist user requirements for geographic climate change information

    Get PDF
    The EU EuroClim project developed a system to monitor and record climate change indicator data based on satellite observations of snow cover, sea ice and glaciers in Northern Europe and the Arctic. It also contained projection data for temperature, rainfall and average wind speed for Europe. These were all stored as data sets in a GIS database for users to download. The process of gathering requirements for a user population including scientists, researchers, policy makers, educationalists and the general public is described. Using an iterative design methodology, a user survey was administered to obtain initial feedback on the system concept followed by panel sessions where users were presented with the system concept and a demonstrator to interact with it. The requirements of both specialist and non-specialist users is summarised together with strategies for the effective communication of geographic climate change information

    Using Geographic Information Systems to Organize and Coordinate Holistic Watershed Resource Management

    Get PDF
    Thesis research explores the use of Geographic Information Systems (GIS), such as ESRI’s ArcGIS and Google Earth, to organize and coordinate statewide, regional, and locally led watershed initiatives in West Virginia. Holistic Watershed Resource Management (HWRM) is an innovative collaborative approach to environmental protection designed to synchronize regional and local environmental assessment and restoration efforts. HWRM success is often attributed to an inclusive decision-making process, which seeks to build and coordinate cooperative partnerships among government agencies, private businesses, educational institutions, and non-profit organizations. A case study of the Morris Creek Watershed Association and detailed surveys of over 100 West Virginia watershed associations were conducted to give additional insight into HWRM on the local and regional scale
    • …
    corecore