37 research outputs found

    A new small-bodied ankylosaurian dinosaur from the Upper Cretaceous of North Patagonia (Río Negro Province, Argentina)

    Get PDF
    The most representative ankylosaurian remains from Argentina have been found in sediments of the Allen Formation (Campanian–Maastrichtian) in Salitral Moreno, Río Negro Province. Several authors have discussed the identity and history of these remains. In this study, we review all published material along with some new remains in order to summarize all the knowledge about these ankylosaurs. Previously published material includes a tooth, dorsal and anterior caudal vertebrae, a femur and several osteoderms. The new remains include synsacral and caudal elements, a partial femur and osteoderms. The anatomy of the tooth, the synsacrum, the mid-caudal vertebra, the femur and the osteoderms, and the histology of the post-cervical osteoderms, support a nodosaurid identification, as proposed in previous descriptions of the Salitral Moreno material. Patagopelta cristata gen. et sp. nov. is a new nodosaurid ankylosaur characterized by the presence of unique cervical half-ring and femoral anatomies, including high-crested lateral osteoderms in the half rings and a strongly developed muscular crest in the anterior surface of the femur. The ∼2 m body length estimated for Patagopelta is very small for an ankylosaur, comparable with the dwarf nodosaurid Struthiosaurus. We recovered Patagopelta within Nodosaurinae, related to nodosaurids from the ‘mid’-Cretaceous of North America, contrasting the previous topologies that related this material with Panoplosaurini (Late Cretaceous North American nodosaurids). These results support a palaeobiogeographical context in which the nodosaurids from Salitral Moreno, Argentina, are part of the allochthonous fauna that migrated into South America during the late Campanian as part of the First American Biotic Interchange. https://zoobank.org/urn:lsid:zoobank.org:pub:FBA24443-F365-49FD-A959-10D2848C2400.Fil: Riguetti, Facundo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Centro de Ciencias Naturales, Ambientales y Antropológicas; ArgentinaFil: Pereda Suberbiola, Xabier. Universidad del País Vasco; EspañaFil: Ponce, Denis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Salgado, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Apesteguía, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Centro de Ciencias Naturales, Ambientales y Antropológicas; ArgentinaFil: Rozadilla, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Arbour, Victoria. University of Victoria; Canad

    The phylogenetic nomenclature of ornithischian dinosaurs

    Get PDF
    Ornithischians form a large clade of globally distributed Mesozoic dinosaurs, and represent one of their three major radiations. Throughout their evolutionary history, exceeding 134 million years, ornithischians evolved considerable morphological disparity, expressed especially through the cranial and osteodermal features of their most distinguishable representatives. The nearly two-century-long research history on ornithischians has resulted in the recognition of numerous diverse lineages, many of which have been named. Following the formative publications establishing the theoretical foundation of phylogenetic nomenclature throughout the 1980s and 1990s, many of the proposed names of ornithischian clades were provided with phylogenetic definitions. Some of these definitions have proven useful and have not been changed, beyond the way they were formulated, since their introduction. Some names, however, have multiple definitions, making their application ambiguous. Recent implementation of the International Code of Phylogenetic Nomenclature (ICPN, or PhyloCode) offers the opportunity to explore the utility of previously proposed definitions of established taxon names. Since the Articles of the ICPN are not to be applied retroactively, all phylogenetic definitions published prior to its implementation remain informal (and ineffective) in the light of the Code. Here, we revise the nomenclature of ornithischian dinosaur clades; we revisit 76 preexisting ornithischian clade names, review their recent and historical use, and formally establish their phylogenetic definitions. Additionally, we introduce five new clade names: two for robustly supported clades of later-diverging hadrosaurids and ceratopsians, one uniting heterodontosaurids and genasaurs, and two for clades of nodosaurids. Our study marks a key step towards a formal phylogenetic nomenclature of ornithischian dinosaurs. © 2021 Madzia et al

    The anatomy and palaeobiology of the early armoured dinosaur Scutellosaurus lawleri (Ornithischia: Thyreophora) from the Kayenta Formation (Lower Jurassic) of Arizona

    Get PDF
    The armoured dinosaurs, Thyreophora, were a diverse clade of ornithischians known from the Early Jurassic to the end of the Cretaceous. During the Middle and Late Jurassic, the thyreophorans radiated to evolve large body size, quadrupedality, and complex chewing mechanisms, and members of the group include some of the most iconic dinosaurs, including the plated Stegosaurus and the club-tailed Ankylosaurus; however, the early stages of thyreophoran evolution are poorly understood due to a paucity of relatively complete remains from early diverging thyreophoran taxa. Scutellosaurus lawleri is generally reconstructed as the earliest-diverging thyreophoran and is known from over 70 specimens from the Lower Jurassic Kayenta Formation of Arizona, USA. Whereas Scutellosaurus lawleri is pivotal to our understanding of character-state changes at the base of Thyreophora that can shed light on the early evolution of the armoured dinosaurs, the taxon has received limited study. Herein, we provide a detailed account of the osteology of Scutellosaurus lawleri, figuring many elements for the first time. Scutellosaurus lawleri was the only definitive bipedal thyreophoran. Histological studies indicate that it grew slowly throughout its life, possessing lamellar-zonal tissue that was a consequence neither of its small size nor phylogenetic position, but may instead be autapomorphic, and supporting other studies that suggest thyreophorans had lower basal metabolic rates than other ornithischian dinosaurs. Faunal diversity of the Kayenta Formation in comparison with other well-known Early Jurassic-aged dinosaur-bearing formations indicates that there was considerable spatial and/or environmental variation in Early Jurassic dinosaur faunas

    First dinosaur from the Isle of Eigg (Valtos Sandstone Formation, Middle Jurassic) Scotland

    Get PDF
    Dinosaur body fossil material is rare in Scotland, previously known almost exclusively from the Great Estuarine Group on the Isle of Skye. We report the first unequivocal dinosaur fossil from the Isle of Eigg, belonging to a Bathonian (Middle Jurassic) taxon of uncertain affinity. The limb bone NMS G.2020.10.1 is incomplete, but through a combination of anatomical comparison and osteohistology, we determine it most likely represents a stegosaur fibula. The overall proportions and cross-sectional geometry are similar to the fibulae of thyreophorans. Examination of the bone microstructure reveals a high degree of remodelling and randomly distributed longitudinal canals in the remaining primary cortical bone. This contrasts with the histological signal expected of theropod or sauropod limb bones, but is consistent with previous studies of thyreophorans, specifically stegosaurs. Previous dinosaur material from Skye and broadly contemporaneous sites in England belongs to this group, including <jats:italic>Loricatosaurus</jats:italic> and <jats:italic>Sarcolestes</jats:italic> and a number of indeterminate stegosaur specimens. Theropods such as <jats:italic>Megalosaurus</jats:italic> and sauropods such as <jats:italic>Cetiosaurus</jats:italic> are also known from these localities. Although we find strong evidence for a stegosaur affinity, diagnostic features are not observed on NMS G.2020.10.1, preventing us from referring it to any known genera. The presence of this large-bodied stegosaur on Eigg adds a significant new datapoint for dinosaur distribution in the Middle Jurassic of Scotland

    Relationships of mass properties and body proportions to locomotor habit in terrestrial Archosauria

    Get PDF
    Abstract Throughout their 250 Myr history, archosaurian reptiles have exhibited a wide array of body sizes, shapes, and locomotor habits, especially in regard to terrestriality. These features make Archosauria a useful clade with which to study the interplay between body size, shape, and locomotor behavior, and how this interplay may have influenced locomotor evolution. Here, digital volumetric models of 80 taxa are used to explore how mass properties and body proportions relate to each other and locomotor posture in archosaurs. One-way, nonparametric, multivariate analysis of variance, based on the results of principal components analysis, shows that bipedal and quadrupedal archosaurs are largely distinguished from each other on the basis of just four anatomical parameters (p &lt; 0.001): mass, center of mass position, and relative forelimb and hindlimb lengths. This facilitates the development of a quantitative predictive framework that can help assess gross locomotor posture in understudied or controversial taxa, such as the crocodile-line Batrachotomus (predicted quadruped) and Postosuchus (predicted biped). Compared with quadrupedal archosaurs, bipedal species tend to have relatively longer hindlimbs and a more caudally positioned whole-body center of mass, and collectively exhibit greater variance in forelimb lengths. These patterns are interpreted to reflect differing biomechanical constraints acting on the archosaurian Bauplan in bipedal versus quadrupedal groups, which may have shaped the evolutionary histories of their respective members.</jats:p

    Living alone or moving in herds? A holistic approach highlights complexity in the social lifestyle of Cretaceous ankylosaurs

    Get PDF
    Gregarious behaviour of large bodied herbivorous dinosaurs, such as ceratopsians, hadrosaurs and sauropods, has received much attention due to their iconic mass death assemblages (MDAs). Yet, social lifestyle of ankylosaurs, a highly specialized group of armoured herbivores that flourished predominantly during the Cretaceous Period, remains largely ambiguous. Whereas most ankylosaurs are found as isolated individuals, which may suggest a dominantly solitary lifestyle, the few examples of ankylosaur MDAs indicate that some members of the group could have been gregarious. In this review, we assess taphonomical history, ontogenetic composition of monotaxic MDAs, defence system and other comparative anatomical attributes, and inferred habitat preference; aspects that indicate and/or influence group formation in extant herbivores and can also be studied in fossils. We show that the ankylosaurian gross anatomy, such as their heavy armour, barrel-shaped body and usually stocky limbs, combined with the rarity of their MDAs and multiple parallel trackways, all suggest a solitary adult life with efficient anti-predator defence system, limited agility, and confined foraging range. However, characteristics of the known MDAs of Pinacosaurus, Gastonia, and the Iharkút nodosaurids evaluated in this study imply that at least some ankylosaurs formed groups. Nevertheless, we found no common and consistent set of features to explain why these particular ankylosaurs were gregarious. While inefficient anti-predator defence along with likely higher agility of juvenile Pinacosaurus living in open habitats could account for their gregarious behaviour, such ontogenetic, anatomical and habitat features are not combined either in Gastonia or in the Iharkút nodosaurid MDAs. Instead, members of each MDA likely had their own specific conditions driving them to form relatively small herds, indicating a more complex social structuring in ankylosaurs than previously acknowledged. Studying morphological and functional disparity within Ankylosauria may help explain the repertoire of their social behaviour. Our holistic approach shows that combining palaeontological and biological information is essential and can provide new insights into the behavioural ecology of long extinct vertebrates
    corecore