18,643 research outputs found

    The influence of convective exchanges on coandĂŁ effect

    Get PDF
    Modeling CoandĂŁ effect has been a fundamental issue in fluid dynamic research in the XX century. It has lost some interest because of the improvement in CFD, even if it could be still important in the area of the preliminary design of aerodynamic devices that benefits of fluid deflection by convex surfaces. An effective model of CoandĂŁ effect has not been defined, and fundamental questions are still open. The influence of convective heat exchange on CoandĂŁ adhesion of a fluid stream on a convex surface in the presence of a temperature gradient between the fluid and the convex surface is a problem, which affects many practical cases, but it is still marginally approached by scientific literature. This paper aims to start an effective research direction on the effects of convective heat exchange on CoandĂŁ effect. It approaches the problem with a set of CFD simulations. It analyses the previous hypotheses, which are based on Prandtl number and evidences the need of a more effective model that accounts also for the Reynolds number

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Modelling Aspects of Planar Multi-Mode Antennas for Direction-of-Arrival Estimation

    Get PDF
    Multi-mode antennas are an alternative to classical antenna arrays, and hence a promising emerging sensor technology for a vast variety of applications in the areas of array signal processing and digital communications. An unsolved problem is to describe the radiation pattern of multi-mode antennas in closed analytic form based on calibration measurements or on electromagnetic field (EMF) simulation data. As a solution, we investigate two modeling methods: One is based on the array interpolation technique (AIT), the other one on wavefield modeling (WM). Both methods are able to accurately interpolate quantized EMF data of a given multi-mode antenna, in our case a planar four-port antenna developed for the 6-8.5 GHz range. Since the modeling methods inherently depend on parameter sets, we investigate the influence of the parameter choice on the accuracy of both models. Furthermore, we evaluate the impact of modeling errors for coherent maximum-likelihood direction-of-arrival (DoA) estimation given different model parameters. Numerical results are presented for a single polarization component. Simulations reveal that the estimation bias introduced by model errors is subject to the chosen model parameters. Finally, we provide optimized sets of AIT and WM parameters for the multi-mode antenna under investigation. With these parameter sets, EMF data samples can be reproduced in interpolated form with high angular resolution
    • 

    corecore