4,080 research outputs found

    Different patterns of white matter degeneration using multiple diffusion indices and volumetric data in mild cognitive impairment and Alzheimer patients

    Get PDF
    Alzheimeŕs disease (AD) represents the most prevalent neurodegenerative disorder that causes cognitive decline in old age. In its early stages, AD is associated with microstructural abnormalities in white matter (WM). In the current study, multiple indices of diffusion tensor imaging (DTI) and brain volumetric measurements were employed to comprehensively investigate the landscape of AD pathology. The sample comprised 58 individuals including cognitively normal subjects (controls), amnestic mild cognitive impairment (MCI) and AD patients. Relative to controls, both MCI and AD subjects showed widespread changes of anisotropic fraction (FA) in the corpus callosum, cingulate and uncinate fasciculus. Mean diffusivity and radial changes were also observed in AD patients in comparison with controls. After controlling for the gray matter atrophy the number of regions of significantly lower FA in AD patients relative to controls was decreased; nonetheless, unique areas of microstructural damage remained, e.g., the corpus callosum and uncinate fasciculus. Despite sample size limitations, the current results suggest that a combination of secondary and primary degeneration occurrs in MCI and AD, although the secondary degeneration appears to have a more critical role during the stages of disease involving dementia

    Editorial — Special Issue: ISMM 2019

    Get PDF
    This editorial presents the Special Issue dedicated to the conference ISMM 2019 and summarizes the articles published in this Special Issue

    Nonnegative tensor CP decomposition of hyperspectral data

    No full text
    International audienceNew hyperspectral missions will collect huge amounts of hyperspectral data. Besides, it is possible now to acquire time series and multiangular hyperspectral images. The process and analysis of these big data collections will require common hyperspectral techniques to be adapted or reformulated. The tensor decomposition, \textit{a.k.a.} multiway analysis, is a technique to decompose multiway arrays, that is, hypermatrices with more than two dimensions (ways). Hyperspectral time series and multiangular acquisitions can be represented as a 3-way tensor. Here, we apply Canonical Polyadic tensor decomposition techniques to the blind analysis of hyperspectral big data. In order to do so, we use a novel compression-based nonnegative CP decomposition. We show that the proposed methodology can be interpreted as multilinear blind spectral unmixing, a higher order extension of the widely known spectral unmixing. In the proposed approach, the big hyperspectral tensor is decomposed in three sets of factors which can be interpreted as spectral signatures, their spatial distribution and temporal/angular changes. We provide experimental validation using a study case of the snow coverage of the French Alps during the snow season

    Focal Spot, Winter 2006/2007

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1104/thumbnail.jp

    Focal Spot, Spring/Summer 2010

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1114/thumbnail.jp

    Polyphonic Sound Event Detection by using Capsule Neural Networks

    Full text link
    Artificial sound event detection (SED) has the aim to mimic the human ability to perceive and understand what is happening in the surroundings. Nowadays, Deep Learning offers valuable techniques for this goal such as Convolutional Neural Networks (CNNs). The Capsule Neural Network (CapsNet) architecture has been recently introduced in the image processing field with the intent to overcome some of the known limitations of CNNs, specifically regarding the scarce robustness to affine transformations (i.e., perspective, size, orientation) and the detection of overlapped images. This motivated the authors to employ CapsNets to deal with the polyphonic-SED task, in which multiple sound events occur simultaneously. Specifically, we propose to exploit the capsule units to represent a set of distinctive properties for each individual sound event. Capsule units are connected through a so-called "dynamic routing" that encourages learning part-whole relationships and improves the detection performance in a polyphonic context. This paper reports extensive evaluations carried out on three publicly available datasets, showing how the CapsNet-based algorithm not only outperforms standard CNNs but also allows to achieve the best results with respect to the state of the art algorithms
    • …
    corecore