26,059 research outputs found

    Laboratory Test Bench for Research Network and Cloud Computing

    Full text link
    At present moment, there is a great interest in development of information systems operating in cloud infrastructures. Generally, many of tasks remain unresolved such as tasks of optimization of large databases in a hybrid cloud infrastructure, quality of service (QoS) at different levels of cloud services, dynamic control of distribution of cloud resources in application systems and many others. Research and development of new solutions can be limited in case of using emulators or international commercial cloud services, due to the closed architecture and limited opportunities for experimentation. Article provides answers to questions on the establishment of a pilot cloud practically "at home" with the ability to adjust the width of the emulation channel and delays in data transmission. It also describes architecture and configuration of the experimental setup. The proposed modular structure can be expanded by available computing power.Comment: 5 page

    Engineering at San Jose State University, Spring 2006

    Get PDF
    https://scholarworks.sjsu.edu/engr_news/1003/thumbnail.jp

    Smart Sensing Systems for the Daily Drive

    Get PDF
    When driving, you might sometimes wonder, "Are there any disruptions on my regular route that might delay me, and will I be able to find a parking space when I arrive?" Two smartphone-based prototype systems can help answer these questions. The first is ParkSense, which can be used to sense on-street parking-space occupancy when coupled with electronic parking payment systems. The second system can sense and recognize a user's repeated car journeys, which can be used to provide personalized alerts to the user. Both systems aim to minimize the impact of sensing tasks on the device's lifetime so that the user can continue to use the device for its primary purpose. This department is part of a special issue on smart vehicle spaces

    CHORUS Deliverable 3.4: Vision Document

    Get PDF
    The goal of the CHORUS Vision Document is to create a high level vision on audio-visual search engines in order to give guidance to the future R&D work in this area and to highlight trends and challenges in this domain. The vision of CHORUS is strongly connected to the CHORUS Roadmap Document (D2.3). A concise document integrating the outcomes of the two deliverables will be prepared for the end of the project (NEM Summit)

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm

    Get PDF
    In recent years, a variety of relevance feedback (RF) schemes have been developed to improve the performance of content-based image retrieval (CBIR). Given user feedback information, the key to a RF scheme is how to select a subset of image features to construct a suitable dissimilarity measure. Among various RF schemes, biased discriminant analysis (BDA) based RF is one of the most promising. It is based on the observation that all positive samples are alike, while in general each negative sample is negative in its own way. However, to use BDA, the small sample size (SSS) problem is a big challenge, as users tend to give a small number of feedback samples. To explore solutions to this issue, this paper proposes a direct kernel BDA (DKBDA), which is less sensitive to SSS. An incremental DKBDA (IDKBDA) is also developed to speed up the analysis. Experimental results are reported on a real-world image collection to demonstrate that the proposed methods outperform the traditional kernel BDA (KBDA) and the support vector machine (SVM) based RF algorithms
    corecore