432 research outputs found

    Integrating IVHM and Asset Design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collection of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Integrating IVHM and asset design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collecting of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Major challenges in prognostics: study on benchmarking prognostic datasets

    Get PDF
    Even though prognostics has been defined to be one of the most difficult tasks in Condition Based Maintenance (CBM), many studies have reported promising results in recent years. The nature of the prognostics problem is different from diagnostics with its own challenges. There exist two major approaches to prognostics: data-driven and physics-based models. This paper aims to present the major challenges in both of these approaches by examining a number of published datasets for their suitability for analysis. Data-driven methods require sufficient samples that were run until failure whereas physics-based methods need physics of failure progression

    A Similarity-Based Prognostics Approach for Remaining Useful Life Prediction

    Get PDF
    Physics-based and data-driven models are the two major prognostic approaches in the literature with their own advantages and disadvantages. This paper presents a similarity-based data-driven prognostic methodology and efficiency analysis study on remaining useful life estimation results. A similarity-based prognostic model is modified to employ the most similar training samples for RUL estimations on each time instance. The presented model is tested on; Virkler’s fatigue crack growth dataset, a drilling process degradation dataset, and a sliding chair degradation of a turnout system dataset. Prediction performances are compared utilizing an evaluation metric. Efficiency analysis of optimization results show that the modified similarity-based model performs better than the original definition

    Use of COTS functional analysis software as an IVHM design tool for detection and isolation of UAV fuel system faults

    Get PDF
    This paper presents a new approach to the development of health management solutions which can be applied to both new and legacy platforms during the conceptual design phase. The approach involves the qualitative functional modelling of a system in order to perform an Integrated Vehicle Health Management (IVHM) design – the placement of sensors and the diagnostic rules to be used in interrogating their output. The qualitative functional analysis was chosen as a route for early assessment of failures in complex systems. Functional models of system components are required for capturing the available system knowledge used during various stages of system and IVHM design. MADe™ (Maintenance Aware Design environment), a COTS software tool developed by PHM Technology, was used for the health management design. A model has been built incorporating the failure diagrams of five failure modes for five different components of a UAV fuel system. Thus an inherent health management solution for the system and the optimised sensor set solution have been defined. The automatically generated sensor set solution also contains a diagnostic rule set, which was validated on the fuel rig for different operation modes taking into account the predicted fault detection/isolation and ambiguity group coefficients. It was concluded that when using functional modelling, the IVHM design and the actual system design cannot be done in isolation. The functional approach requires permanent input from the system designer and reliability engineers in order to construct a functional model that will qualitatively represent the real system. In other words, the physical insight should not be isolated from the failure phenomena and the diagnostic analysis tools should be able to adequately capture the experience bases. This approach has been verified on a laboratory bench top test rig which can simulate a range of possible fuel system faults. The rig is fully instrumented in order to allow benchmarking of various sensing solution for fault detection/isolation that were identified using functional analysis

    Economic and environmental impact assessment through system dynamics of technology-enhanced maintenance services

    Get PDF
    This work presents an economic and environmental impact assessment of maintenance services in order to evaluate how they contribute to sustainable value creation through field service delivery supported by advanced technologies. To this end, systems dynamics is used to assist the prediction of economic and environmental impacts of maintenance services supported by the use of an e-maintenance platform implementing prognosis and health management. A special concern is given to the energy use and related carbon footprint as environmental impacts

    Editorial messages

    Get PDF
    Dear readers, The goal of this special edition was to shed light on the application of machine learning and artificial intelligence in the transformer industry, contributing to a better understanding of the requirements and available solutions. Expectations from these technologies are high in terms of what they can provide in various fields: monitoring, diagnostics, control, maintenance, perhaps even design, etc. A particular advantage of AI and ML technologies is the ability to predict future conditions, which opens up space for completely new paradigms, especially in maintenance. AI and ML technologies are also highly related to digitalization as a dominant global trend, which facilitates agile business models that respond to challenges within emerging markets. Digitalization also leads to a surge in data generation and accumulation, and with proper analysis, these data are expected to significantly secure and improve the grid performance and resolve various customer demands. This is also why we need solutions for understanding the data and learning from it. In addition, the speed and reliability of obtained information become essential, so all these trends are greatly supporting each other. Therefore, significant growth in investments and businesses related to this field is expected in near future. However, there are also challenges such as testing, deployability, scalability, transparency, affordability, and cyber security. I’m glad that a group of great authors together with our respectable Guest Editorial team have prepared high-quality articles this issue brings, addressing the above-mentioned key aspects. I hope you will enjoy your reading

    Editorial messages

    Get PDF
    Dear readers, The goal of this special edition was to shed light on the application of machine learning and artificial intelligence in the transformer industry, contributing to a better understanding of the requirements and available solutions. Expectations from these technologies are high in terms of what they can provide in various fields: monitoring, diagnostics, control, maintenance, perhaps even design, etc. A particular advantage of AI and ML technologies is the ability to predict future conditions, which opens up space for completely new paradigms, especially in maintenance. AI and ML technologies are also highly related to digitalization as a dominant global trend, which facilitates agile business models that respond to challenges within emerging markets. Digitalization also leads to a surge in data generation and accumulation, and with proper analysis, these data are expected to significantly secure and improve the grid performance and resolve various customer demands. This is also why we need solutions for understanding the data and learning from it. In addition, the speed and reliability of obtained information become essential, so all these trends are greatly supporting each other. Therefore, significant growth in investments and businesses related to this field is expected in near future. However, there are also challenges such as testing, deployability, scalability, transparency, affordability, and cyber security. I’m glad that a group of great authors together with our respectable Guest Editorial team have prepared high-quality articles this issue brings, addressing the above-mentioned key aspects. I hope you will enjoy your reading
    • …
    corecore