17,699 research outputs found

    Alamethicin self-assembling in lipid membranes: concentration dependence from pulsed EPR of spin labels

    Get PDF
    The antimicrobial action of the peptide antibiotic alamethicin (Alm) is commonly related to peptide self-assembling resulting in the formation of voltage-dependent channels in bacterial membranes, which induces ion permeation. To obtain a deeper insight into the mechanism of channel formation, it is useful to know the dependence of self-assembling on peptide concentration. With this aim, we studied Alm F50/5 spin-labeled analogs in a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane, for peptide-to-lipid (P/L) ratios varying between 1/1500 and 1/100. Pulsed electron-electron double resonance (PELDOR) spectroscopy reveals that even at the lowest concentration investigated, the Alm molecules assemble into dimers. Moreover, under these conditions, electron spin echo envelope modulation (ESEEM) spectroscopy of D2O-hydrated membranes shows an abrupt change from the in-plane to the trans-membrane orientation of the peptide. Therefore, we hypothesize that dimer formation and peptide reorientation are concurrent processes and represent the initial step of peptide self-assembling. By increasing peptide concentration, higher oligomers are formed. A simple kinetic model of equilibrium among monomers, dimers, and pentamers allows for satisfactorily describing the experimental PELDOR data. The inter-label distances in the oligomers obtained from PELDOR experiments become better resolved with increasing P/L ratio, thus suggesting that the supramolecular organization of the higher-order oligomers becomes more defined

    The relay network of Geobacter biofilms

    Get PDF
    While actual models explaining electron conduction in electricity producing biofilms have evolved separately to apparent irreconcilable conceptual positions, finding cytochrome complexes in the external matrix of Geobacter biofilms supports the proposal of a new functional model, that takes fundamental elements from confronting theories. In this model electrons expelled by cells are conducted to the collecting electrode along a network of supramolecular cytochrome arrangements interconnected by semiconducting pilus fibres that provide equipotential conditions within physically distant points. This arrangement resembles, from our point of view, a relay network for Geobacter biofilm, which allows a concerted physiological response of the entire population to any local redox change.Fil: Ordoñez, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Schrott, Germán David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Massazza, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Busalmen, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin

    The Alanine World Model for the Development of the Amino Acid Repertoire in Protein Biosynthesis

    Get PDF
    A central question in the evolution of the modern translation machinery is the origin and chemical ethology of the amino acids prescribed by the genetic code. The RNA World hypothesis postulates that templated protein synthesis has emerged in the transition from RNA to the Protein World. The sequence of these events and principles behind the acquisition of amino acids to this process remain elusive. Here we describe a model for this process by following the scheme previously proposed by Hartman and Smith, which suggests gradual expansion of the coding space as GC–GCA–GCAU genetic code. We point out a correlation of this scheme with the hierarchy of the protein folding. The model follows the sequence of steps in the process of the amino acid recruitment and fits well with the co-evolution and coenzyme handle theories. While the starting set (GC-phase) was responsible for the nucleotide biosynthesis processes, in the second phase alanine-based amino acids (GCA-phase) were recruited from the core metabolism, thereby providing a standard secondary structure, the α-helix. In the final phase (GCAU-phase), the amino acids were appended to the already existing architecture, enabling tertiary fold and membrane interactions. The whole scheme indicates strongly that the choice for the alanine core was done at the GCA-phase, while glycine and proline remained rudiments from the GC-phase. We suggest that the Protein World should rather be considered the Alanine World, as it predominantly relies on the alanine as the core chemical scaffold.TU Berlin, Open-Access-Mittel - 201
    • …
    corecore