39 research outputs found

    A Multi-scale Stochastic Filter Based Approach to Inverse Scattering for 3D Ultrasound Soft Tissue Characterization

    Get PDF
    The goal of this research is to achieve accurate characterization of multi-layered soft tissues in three dimensions using focused ultrasound. The characterization of the acoustic parameters of each tissue layer is formulated as recursive processes of forward- and inverse- scattering. Forward scattering deals with the modeling of focused ultrasound wave propagation in multi-layered tissues, and the computation of the focused wave amplitudes in the tissues based on the acoustic parameters of the tissue as generated by inverse scattering. The model for mapping the tissue acoustic parameters to focused waves is highly nonlinear and stochastic. In addition, solving (or inverting) the model to obtain tissue acoustic parameters is an ill-posed problem. Therefore, a nonlinear stochastic inverse scattering method is proposed such that no linearization and mathematical inversion of the model are required. Inverse scattering aims to estimate the tissue acoustic parameters based on the forward scattering model and ultrasound measurements of the tissues. A multi-scale stochastic filter (MSF) is proposed to perform inverse scattering. MSF generates a set of tissue acoustic parameters, which are then mapped into focused wave amplitudes in the multi-layered tissues by forward scattering. The tissue acoustic parameters are weighted by comparing their focused wave amplitudes to the actual ultrasound measurements. The weighted parameters are used to estimate a weighted Gaussian mixture as the posterior probability density function (PDF) of the parameters. This PDF is optimized to achieve minimum estimation error variance in the sense of the posterior Cramer-Rao bound. The optimized posterior PDF is used to produce minimum mean-square-error estimates of the tissue acoustic parameters. As a result, both the estimation error and uncertainty of the parameters are minimized. PDF optimization is formulated based on a novel multi-scale PDF analysis framework. This framework is founded based on exploiting the analogy between PDFs and analog (or digital) signals. PDFs and signals are similar in the sense that they represent characteristics of variables in their respective domains, except that there are constraints imposed on PDFs. Therefore, it is reasonable to consider a PDF as a signal that is subject to amplitude constraints, and as such apply signal processing techniques to analyze the PDF. The multi-scale PDF analysis framework is proposed to recursively decompose an arbitrary PDF from its fine to coarse scales. The recursive decompositions are designed so as to ensure that requirements such as PDF constraints, zero-phase shift and non-creation of artifacts are satisfied. The relationship between the PDFs at consecutive scales is derived in order for the PDF optimization process to recursively reconstruct the posterior PDF from its coarse to fine scales. At each scale, PDF reconstruction aims to reduce the variances of the posterior PDF Gaussian components, and as a result the confidence in the estimate is increased. The overall posterior PDF variance reduction is guided by the posterior Cramer-Rao bound. A series of experiments is conducted to investigate the performance of the proposed method on ultrasound multi-layered soft tissue characterization. Multi-layered tissue phantoms that emulate ocular components of the eye are fabricated as test subjects. Experimental results confirm that the proposed MSF inverse scattering approach is well suited for three-dimensional ultrasound tissue characterization. In addition, performance comparisons between MSF and a state-of-the-art nonlinear stochastic filter are conducted. Results show that MSF is more accurate and less computational intensive than the state-of-the-art filter

    Machine-human Cooperative Control of Welding Process

    Get PDF
    An innovative auxiliary control system is developed to cooperate with an unskilled welder in a manual GTAW in order to obtain a consistent welding performance. In the proposed system, a novel mobile sensing system is developed to non-intrusively monitor a manual GTAW by measuring three-dimensional (3D) weld pool surface. Specifically, a miniature structured-light laser amounted on torch projects a dot matrix pattern on weld pool surface during the process; Reflected by the weld pool surface, the laser pattern is intercepted by and imaged on the helmet glass, and recorded by a compact camera on it. Deformed reflection pattern contains the geometry information of weld pool, thus is utilized to reconstruct its 33D surface. An innovative image processing algorithm and a reconstruction scheme have been developed for (3D) reconstruction. The real-time spatial relations of the torch and the helmet is formulated during welding. Two miniature wireless inertial measurement units (WIMU) are mounted on the torch and the helmet, respectively, to detect their rotation rates and accelerations. A quaternion based unscented Kalman filter (UKF) has been designed to estimate the helmet/torch orientations based on the data from the WIMUs. The distance between the torch and the helmet is measured using an extra structure-light low power laser pattern. Furthermore, human welder\u27s behavior in welding performance has been studied, e.g., a welder`s adjustments on welding current were modeled as response to characteristic parameters of the three-dimensional weld pool surface. This response model as a controller is implemented both automatic and manual gas tungsten arc welding process to maintain a consistent full penetration

    Crop development monitoring from Synthetic Aperture Radar (SAR) imagery

    Get PDF
    Satellite remote sensing plays a vital role in providing large-scale and timely data to stakeholders of the agricultural supply chain. This allows for informed decision-making that promotes sustainable and cost-effective crop management practices. In particular, data derived from satellite-based Synthetic Aperture Radar (SAR) systems, provide opportunities for continuous crop monitoring, taking advantage of its ability to acquire images during day or night and under almost all weather conditions. Moreover, an abundance of SAR data can be anticipated in the next 5 years with the launch of several international SAR missions. However, research on crop development monitoring with data from SAR satellites has not been as widely studied as with data derived from passive multi-spectral satellites and contributions can be made to the current state-of-the-art techniques. This thesis aims at improving the current knowledge on the use of satellite-based SAR imagery for crop development monitoring. This is approached by developing novel methodologies and detailed interpretations of multitemporal SAR and Polarimetric SAR (PolSAR) responses to crop growth in three different test sites. Chapter two presents a detailed analysis of the Sentinel-1 SAR satellite response to asparagus crop development in Peru, investigating the capabilities of the sensor to capture seasonality effects as well as providing an interpretation of the temporal backscatter signature. This is complemented with a case study where a multiple-output random forest regression algorithm is used to successfully retrieve crop growth stage from Sentinel-1 data and temperature measurements. Following the limitations identified with this approach, a methodology that builds upon ideas of Bayesian Filtering Frameworks (BFFs) for crop monitoring is proposed in chapter three. It incorporates Gaussian processes to model crop dynamics as well as to model the remote sensing response to the crop state. Using this approach, it is possible to derive daily predictions with the associated uncertainties, to combine in near-real-time data from active and passive satellites as well as to estimate past and future crop key events that are of strategic importance for different stakeholders. The final section of this thesis looks at the new developments of the SAR technology considering that future open access missions will provide Quad Polarimetric SAR data. An algorithm based on multitemporal PolSAR change detection is introduced in chapter four. It defines a Change Matrix to encode an interpretable representation of the crop dynamics as captured by the evolution of the scattering mechanisms over time. We use rice fields in Spain and multiple cereal crops in Canada to test the use of the algorithm for crop monitoring. A supervised learning-based crop type classification methodology is then proposed with the same method by using the encoded scattering mechanisms as input for a neural-network-based classifier, achieving comparable performances to state-of-the-art classifiers. The results obtained in this thesis represent novel additions to the literature that contribute to our understanding and successful use of SAR imagery for agricultural monitoring. For the first time, a detailed analysis of asparagus crops is presented. It is a key crop for agricultural exports of Peru, the largest exporter of asparagus in the world. Secondly, two key contributions to the state of the art BFFs for crop monitoring are presented: a) A better exploitation of the SAR temporal dimension and an application with freely available data and b) given that it is a learning-based approach, it overcomes current limitations of transferability among crop types and regions. Finally, the PolSAR change detection approach presented in the last thesis chapter, provides a novel and easy-to-interpret tool for both crop monitoring and crop type mapping applications

    Fast catheter segmentation and tracking based on x-ray fluoroscopic and echocardiographic modalities for catheter-based cardiac minimally invasive interventions

    Get PDF
    X-ray fluoroscopy and echocardiography imaging (ultrasound, US) are two imaging modalities that are widely used in cardiac catheterization. For these modalities, a fast, accurate and stable algorithm for the detection and tracking of catheters is required to allow clinicians to observe the catheter location in real-time. Currently X-ray fluoroscopy is routinely used as the standard modality in catheter ablation interventions. However, it lacks the ability to visualize soft tissue and uses harmful radiation. US does not have these limitations but often contains acoustic artifacts and has a small field of view. These make the detection and tracking of the catheter in US very challenging. The first contribution in this thesis is a framework which combines Kalman filter and discrete optimization for multiple catheter segmentation and tracking in X-ray images. Kalman filter is used to identify the whole catheter from a single point detected on the catheter in the first frame of a sequence of x-ray images. An energy-based formulation is developed that can be used to track the catheters in the following frames. We also propose a discrete optimization for minimizing the energy function in each frame of the X-ray image sequence. Our approach is robust to tangential motion of the catheter and combines the tubular and salient feature measurements into a single robust and efficient framework. The second contribution is an algorithm for catheter extraction in 3D ultrasound images based on (a) the registration between the X-ray and ultrasound images and (b) the segmentation of the catheter in X-ray images. The search space for the catheter extraction in the ultrasound images is constrained to lie on or close to a curved surface in the ultrasound volume. The curved surface corresponds to the back-projection of the extracted catheter from the X-ray image to the ultrasound volume. Blob-like features are detected in the US images and organized in a graphical model. The extracted catheter is modelled as the optimal path in this graphical model. Both contributions allow the use of ultrasound imaging for the improved visualization of soft tissue. However, X-ray imaging is still required for each ultrasound frame and the amount of X-ray exposure has not been reduced. The final contribution in this thesis is a system that can track the catheter in ultrasound volumes automatically without the need for X-ray imaging during the tracking. Instead X-ray imaging is only required for the system initialization and for recovery from tracking failures. This allows a significant reduction in the amount of X-ray exposure for patient and clinicians.Open Acces

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    Combining omnidirectional vision with polarization vision for robot navigation

    Get PDF
    La polarisation est le phénomène qui décrit les orientations des oscillations des ondes lumineuses qui sont limitées en direction. La lumière polarisée est largement utilisée dans le règne animal,à partir de la recherche de nourriture, la défense et la communication et la navigation. Le chapitre (1) aborde brièvement certains aspects importants de la polarisation et explique notre problématique de recherche. Nous visons à utiliser un capteur polarimétrique-catadioptrique car il existe de nombreuses applications qui peuvent bénéficier d'une telle combinaison en vision par ordinateur et en robotique, en particulier pour l'estimation d'attitude et les applications de navigation. Le chapitre (2) couvre essentiellement l'état de l'art de l'estimation d'attitude basée sur la vision.Quand la lumière non-polarisée du soleil pénètre dans l'atmosphère, l'air entraine une diffusion de Rayleigh, et la lumière devient partiellement linéairement polarisée. Le chapitre (3) présente les motifs de polarisation de la lumière naturelle et couvre l'état de l'art des méthodes d'acquisition des motifs de polarisation de la lumière naturelle utilisant des capteurs omnidirectionnels (par exemple fisheye et capteurs catadioptriques). Nous expliquons également les caractéristiques de polarisation de la lumière naturelle et donnons une nouvelle dérivation théorique de son angle de polarisation.Notre objectif est d'obtenir une vue omnidirectionnelle à 360 associée aux caractéristiques de polarisation. Pour ce faire, ce travail est basé sur des capteurs catadioptriques qui sont composées de surfaces réfléchissantes et de lentilles. Généralement, la surface réfléchissante est métallique et donc l'état de polarisation de la lumière incidente, qui est le plus souvent partiellement linéairement polarisée, est modifiée pour être polarisée elliptiquement après réflexion. A partir de la mesure de l'état de polarisation de la lumière réfléchie, nous voulons obtenir l'état de polarisation incident. Le chapitre (4) propose une nouvelle méthode pour mesurer les paramètres de polarisation de la lumière en utilisant un capteur catadioptrique. La possibilité de mesurer le vecteur de Stokes du rayon incident est démontré à partir de trois composants du vecteur de Stokes du rayon réfléchi sur les quatre existants.Lorsque les motifs de polarisation incidents sont disponibles, les angles zénithal et azimutal du soleil peuvent être directement estimés à l'aide de ces modèles. Le chapitre (5) traite de l'orientation et de la navigation de robot basées sur la polarisation et différents algorithmes sont proposés pour estimer ces angles dans ce chapitre. A notre connaissance, l'angle zénithal du soleil est pour la première fois estimé dans ce travail à partir des schémas de polarisation incidents. Nous proposons également d'estimer l'orientation d'un véhicule à partir de ces motifs de polarisation.Enfin, le travail est conclu et les possibles perspectives de recherche sont discutées dans le chapitre (6). D'autres exemples de schémas de polarisation de la lumière naturelle, leur calibrage et des applications sont proposées en annexe (B).Notre travail pourrait ouvrir un accès au monde de la vision polarimétrique omnidirectionnelle en plus des approches conventionnelles. Cela inclut l'orientation bio-inspirée des robots, des applications de navigation, ou bien la localisation en plein air pour laquelle les motifs de polarisation de la lumière naturelle associés à l'orientation du soleil à une heure précise peuvent aboutir à la localisation géographique d'un véhiculePolarization is the phenomenon that describes the oscillations orientations of the light waves which are restricted in direction. Polarized light has multiple uses in the animal kingdom ranging from foraging, defense and communication to orientation and navigation. Chapter (1) briefly covers some important aspects of polarization and explains our research problem. We are aiming to use a polarimetric-catadioptric sensor since there are many applications which can benefit from such combination in computer vision and robotics specially robot orientation (attitude estimation) and navigation applications. Chapter (2) mainly covers the state of art of visual based attitude estimation.As the unpolarized sunlight enters the Earth s atmosphere, it is Rayleigh-scattered by air, and it becomes partially linearly polarized. This skylight polarization provides a signi cant clue to understanding the environment. Its state conveys the information for obtaining the sun orientation. Robot navigation, sensor planning, and many other applications may bene t from using this navigation clue. Chapter (3) covers the state of art in capturing the skylight polarization patterns using omnidirectional sensors (e.g fisheye and catadioptric sensors). It also explains the skylight polarization characteristics and gives a new theoretical derivation of the skylight angle of polarization pattern. Our aim is to obtain an omnidirectional 360 view combined with polarization characteristics. Hence, this work is based on catadioptric sensors which are composed of reflective surfaces and lenses. Usually the reflective surface is metallic and hence the incident skylight polarization state, which is mostly partially linearly polarized, is changed to be elliptically polarized after reflection. Given the measured reflected polarization state, we want to obtain the incident polarization state. Chapter (4) proposes a method to measure the light polarization parameters using a catadioptric sensor. The possibility to measure the incident Stokes is proved given three Stokes out of the four reflected Stokes. Once the incident polarization patterns are available, the solar angles can be directly estimated using these patterns. Chapter (5) discusses polarization based robot orientation and navigation and proposes new algorithms to estimate these solar angles where, to the best of our knowledge, the sun zenith angle is firstly estimated in this work given these incident polarization patterns. We also propose to estimate any vehicle orientation given these polarization patterns. Finally the work is concluded and possible future research directions are discussed in chapter (6). More examples of skylight polarization patterns, their calibration, and the proposed applications are given in appendix (B). Our work may pave the way to move from the conventional polarization vision world to the omnidirectional one. It enables bio-inspired robot orientation and navigation applications and possible outdoor localization based on the skylight polarization patterns where given the solar angles at a certain date and instant of time may infer the current vehicle geographical location.DIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    Contrôle en temps réel de la précision du suivi indirect de tumeurs mobiles en radiothérapie

    Full text link
    Le but de la radiothérapie est d’irradier les cellules cancéreuses tout en préservant au maximum les tissus sains environnants. Or, dans le cas du cancer du poumon, la respiration du patient engendre des mouvements de la tumeur pendant le traitement. Une solution possible est de repositionner continuellement le faisceau d’irradiation sur la cible tumorale en mouvement. L’e cacité et la sûreté de cette approche reposent sur la localisation précise en temps réel de la tumeur. Le suivi indirect consiste à inférer la position de la cible tumorale à partir de l’observation d’un signal substitut, visible en continu sans nécessiter de rayonnement ionisant. Un modèle de corrélation spatial doit donc être établi. Par ailleurs, pour compenser la latence du système, l’algorithme de suivi doit pouvoir également anticiper la position future de la cible. Parce que la respiration du patient varie dans le temps, les modèles de prédiction et de corrélation peuvent devenir imprécis. La prédiction de la position de la tumeur devrait alors idéalement être complétée par l’estimation des incertitudes associées aux prédictions. Dans la pratique clinique actuelle, ces incertitudes de positionnement en temps réel ne sont pas explicitement prédites. Cette thèse de doctorat s’intéresse au contrôle en temps réel de la précision du suivi indirect de tumeurs mobiles en radiothérapie. Dans un premier temps, une méthode bayésienne pour le suivi indirect en radiothérapie est développée. Cette approche, basée sur le filtre de Kalman, permet de prédire non seulement la position future de la tumeur à partir d’un signal substitut, mais aussi les incertitudes associées. Ce travail o re une première preuve de concept, et montre également le potentiel du foie comme substitut interne, qui apparait plus robuste et fiable que les marqueurs externes communément utilisés dans la pratique clinique. Dans un deuxième temps, une adaptation de la méthode est proposée afin d’améliorer sa robustesse face aux changements de respiration. Cette innovation permet de prédire des régions de confiance adaptatives, capables de détecter les erreurs de prédiction élevées, en se basant exclusivement sur l’observation du signal substitut. Les résultats révèlent qu’à sensibilité élevée (90%), une spécificité d’environ 50% est obtenue. Un processus de validation innovant basé sur ces régions de confiance adaptatives est ensuite évalué et comparé au processus conventionnel qui consiste en des mesures de la cible à intervalles de temps fixes et prédéterminés. Une version adaptative de la méthode bayésienne est donc développée afin d’intégrer des mesures occasionnelles de la position de la cible. Les résultats confirment que les incertitudes prédites par la méthode bayésienne permettent de détecter les erreurs de prédictions élevées, et démontrent que le processus de validation basé sur ces incertitudes a le potentiel d’être plus e cace que les validations régulières. Ces approches bayésiennes sont validées sur des séquences respiratoires de volontaires, acquises par imagerie par résonance magnétique (IRM) dynamique et interpolées à haute fréquence. Afin de compléter l’évaluation de la méthode bayésienne pour le suivi indirect, une validation expérimentale préliminaire est conduite sur des données cliniques de patients atteints de cancer du poumon. Les travaux de ce projet doctoral promettent une amélioration du contrôle en temps réel de la précision des prédictions lors des traitements de radiothérapie. Finalement, puisque l’imagerie ultrasonore pourrait être employée pour visualiser les substituts internes, une étude préliminaire sur l’évaluation automatique de la qualité des images ultrasonores est présentée. Ces résultats pourront être utilisés ultérieurement pour le suivi indirect en radiothérapie en vue d’optimiser les acquisitions ultrasonores pendant les traitements et faciliter l’extraction automatique du mouvement du substitut.The goal of radiotherapy is to irradiate cancer cells while maintaining a low dose of radiation to the surrounding healthy tissue. In the case of lung cancer, the patient’s breathing causes the tumor to move during treatment. One possible solution is to continuously reposition the irradiation beam on the moving target. The e ectiveness and safety of this approach rely on accurate real-time localization of the tumor. Indirect strategies derive the target positions from a correlation model with a surrogate signal, which is continuously monitored without the need for radiation-based imaging. In addition, to compensate for system latency, the tracking algorithm must also be able to anticipate the future position of the target. Because the patient’s breathing varies over time, prediction and correlation models can become inaccurate. Ideally, the prediction of the tumor location would also include an estimation of the uncertainty associated with the prediction. However, in current clinical practice, these real-time positioning uncertainties are not explicitly predicted. This doctoral thesis focuses on real-time control of the accuracy of indirect tracking of mobile tumors in radiotherapy. First, a Bayesian method is developed. This approach, based on Kalman filter theory, allows predicting both future target motion in real-time from a surrogate signal and associated uncertainty. This work o ers a first proof of concept, and also shows the potential of the liver as an internal substitute as it appears more robust and reliable than the external markers commonly used in clinical practice. Second, an adaptation of the method is proposed to improve its robustness against changes in breathing. This innovation enables the prediction of adaptive confidence regions that can be used to detect significant prediction errors, based exclusively on the observation of the surrogate signal. The results show that at high sensitivity (90%), a specificity of about 50% is obtained. A new validation process based on these adaptive confidence regions is then evaluated and compared to the conventional validation process (i.e., target measurements at fixed and predetermined time intervals). An adaptive version of the Bayesian method is therefore developed to valuably incorporate occasional measurements of the target position. The results confirm that the uncertainties predicted by the Bayesian method can detect high prediction errors, and demonstrate that the validation process based on these uncertainties has the potential to be more e cient and e ective than regular validations. For these studies, the proposed Bayesian methods are validated on respiratory sequences of volunteers, acquired by dynamic MRI and interpolated at high frequency. In order to complete the evaluation of the Bayesian method for indirect tracking, experimental validation is conducted on clinical data of patients with lung cancer. The work of this doctoral project promises to improve the real-time control of the accuracy of predictions during radiotherapy treatments. Finally, since ultrasound imaging could be used to visualize internal surrogates, a preliminary study on automatic ultrasound image quality assessment is presented. These results can later be used for indirect tracking in radiotherapy to optimize ultrasound acquisitions during treatments and facilitate the automatic estimation of surrogate motion
    corecore