4,873 research outputs found

    Empty Rectangles and Graph Dimension

    Full text link
    We consider rectangle graphs whose edges are defined by pairs of points in diagonally opposite corners of empty axis-aligned rectangles. The maximum number of edges of such a graph on nn points is shown to be 1/4 n^2 +n -2. This number also has other interpretations: * It is the maximum number of edges of a graph of dimension \bbetween{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\ol{\pi_1},\ol{\pi_2}. * It is the number of 1-faces in a special Scarf complex. The last of these interpretations allows to deduce the maximum number of empty axis-aligned rectangles spanned by 4-element subsets of a set of nn points. Moreover, it follows that the extremal point sets for the two problems coincide. We investigate the maximum number of of edges of a graph of dimension ≬34\between{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\pi_3,\ol{\pi_3}. This maximum is shown to be 1/4n2+O(n)1/4 n^2 + O(n). Box graphs are defined as the 3-dimensional analog of rectangle graphs. The maximum number of edges of such a graph on nn points is shown to be 7/16n2+o(n2)7/16 n^2 + o(n^2)

    A Victorian Age Proof of the Four Color Theorem

    Full text link
    In this paper we have investigated some old issues concerning four color map problem. We have given a general method for constructing counter-examples to Kempe's proof of the four color theorem and then show that all counterexamples can be rule out by re-constructing special 2-colored two paths decomposition in the form of a double-spiral chain of the maximal planar graph. In the second part of the paper we have given an algorithmic proof of the four color theorem which is based only on the coloring faces (regions) of a cubic planar maps. Our algorithmic proof has been given in three steps. The first two steps are the maximal mono-chromatic and then maximal dichromatic coloring of the faces in such a way that the resulting uncolored (white) regions of the incomplete two-colored map induce no odd-cycles so that in the (final) third step four coloring of the map has been obtained almost trivially.Comment: 27 pages, 18 figures, revised versio

    Third case of the Cyclic Coloring Conjecture

    Get PDF
    The Cyclic Coloring Conjecture asserts that the vertices of every plane graph with maximum face size D can be colored using at most 3D/2 colors in such a way that no face is incident with two vertices of the same color. The Cyclic Coloring Conjecture has been proven only for two values of D: the case D=3 is equivalent to the Four Color Theorem and the case D=4 is equivalent to Borodin's Six Color Theorem, which says that every graph that can be drawn in the plane with each edge crossed by at most one other edge is 6-colorable. We prove the case D=6 of the conjecture

    On the Generalised Colouring Numbers of Graphs that Exclude a Fixed Minor

    Full text link
    The generalised colouring numbers colr(G)\mathrm{col}_r(G) and wcolr(G)\mathrm{wcol}_r(G) were introduced by Kierstead and Yang as a generalisation of the usual colouring number, and have since then found important theoretical and algorithmic applications. In this paper, we dramatically improve upon the known upper bounds for generalised colouring numbers for graphs excluding a fixed minor, from the exponential bounds of Grohe et al. to a linear bound for the rr-colouring number colr\mathrm{col}_r and a polynomial bound for the weak rr-colouring number wcolr\mathrm{wcol}_r. In particular, we show that if GG excludes KtK_t as a minor, for some fixed tβ‰₯4t\ge4, then colr(G)≀(tβˆ’12) (2r+1)\mathrm{col}_r(G)\le\binom{t-1}{2}\,(2r+1) and wcolr(G)≀(r+tβˆ’2tβˆ’2)β‹…(tβˆ’3)(2r+1)∈O(r tβˆ’1)\mathrm{wcol}_r(G)\le\binom{r+t-2}{t-2}\cdot(t-3)(2r+1)\in\mathcal{O}(r^{\,t-1}). In the case of graphs GG of bounded genus gg, we improve the bounds to colr(G)≀(2g+3)(2r+1)\mathrm{col}_r(G)\le(2g+3)(2r+1) (and even colr(G)≀5r+1\mathrm{col}_r(G)\le5r+1 if g=0g=0, i.e. if GG is planar) and wcolr(G)≀(2g+(r+22)) (2r+1)\mathrm{wcol}_r(G)\le\Bigl(2g+\binom{r+2}{2}\Bigr)\,(2r+1).Comment: 21 pages, to appear in European Journal of Combinatoric
    • …
    corecore