666 research outputs found

    Disjoint paths in tournaments

    Full text link
    Given kk pairs of vertices (si,ti)(s_i,t_i), 1≀i≀k1\le i\le k, of a digraph GG, how can we test whether there exist kk vertex-disjoint directed paths from sis_i to tit_i for 1≀i≀k1\le i\le k? This is NP-complete in general digraphs, even for k=2k = 2, but for k=2k=2 there is a polynomial-time algorithm when GG is a tournament (or more generally, a semicomplete digraph), due to Bang-Jensen and Thomassen. Here we prove that for all fixed kk there is a polynomial-time algorithm to solve the problem when GG is semicomplete

    Nowhere dense graph classes, stability, and the independence property

    Full text link
    A class of graphs is nowhere dense if for every integer r there is a finite upper bound on the size of cliques that occur as (topological) r-minors. We observe that this tameness notion from algorithmic graph theory is essentially the earlier stability theoretic notion of superflatness. For subgraph-closed classes of graphs we prove equivalence to stability and to not having the independence property.Comment: 9 page

    On the pathwidth of almost semicomplete digraphs

    Full text link
    We call a digraph {\em hh-semicomplete} if each vertex of the digraph has at most hh non-neighbors, where a non-neighbor of a vertex vv is a vertex u≠vu \neq v such that there is no edge between uu and vv in either direction. This notion generalizes that of semicomplete digraphs which are 00-semicomplete and tournaments which are semicomplete and have no anti-parallel pairs of edges. Our results in this paper are as follows. (1) We give an algorithm which, given an hh-semicomplete digraph GG on nn vertices and a positive integer kk, in (h+2k+1)2knO(1)(h + 2k + 1)^{2k} n^{O(1)} time either constructs a path-decomposition of GG of width at most kk or concludes correctly that the pathwidth of GG is larger than kk. (2) We show that there is a function f(k,h)f(k, h) such that every hh-semicomplete digraph of pathwidth at least f(k,h)f(k, h) has a semicomplete subgraph of pathwidth at least kk. One consequence of these results is that the problem of deciding if a fixed digraph HH is topologically contained in a given hh-semicomplete digraph GG admits a polynomial-time algorithm for fixed hh.Comment: 33pages, a shorter version to appear in ESA 201

    Covering Small Independent Sets and Separators with Applications to Parameterized Algorithms

    Full text link
    We present two new combinatorial tools for the design of parameterized algorithms. The first is a simple linear time randomized algorithm that given as input a dd-degenerate graph GG and an integer kk, outputs an independent set YY, such that for every independent set XX in GG of size at most kk, the probability that XX is a subset of YY is at least (((d+1)kk)β‹…k(d+1))βˆ’1\left({(d+1)k \choose k} \cdot k(d+1)\right)^{-1}.The second is a new (deterministic) polynomial time graph sparsification procedure that given a graph GG, a set T={{s1,t1},{s2,t2},…,{sβ„“,tβ„“}}T = \{\{s_1, t_1\}, \{s_2, t_2\}, \ldots, \{s_\ell, t_\ell\}\} of terminal pairs and an integer kk, returns an induced subgraph G⋆G^\star of GG that maintains all the inclusion minimal multicuts of GG of size at most kk, and does not contain any (k+2)(k+2)-vertex connected set of size 2O(k)2^{{\cal O}(k)}. In particular, G⋆G^\star excludes a clique of size 2O(k)2^{{\cal O}(k)} as a topological minor. Put together, our new tools yield new randomized fixed parameter tractable (FPT) algorithms for Stable ss-tt Separator, Stable Odd Cycle Transversal and Stable Multicut on general graphs, and for Stable Directed Feedback Vertex Set on dd-degenerate graphs, resolving two problems left open by Marx et al. [ACM Transactions on Algorithms, 2013]. All of our algorithms can be derandomized at the cost of a small overhead in the running time.Comment: 35 page
    • …
    corecore