609 research outputs found

    Graph Treewidth and Geometric Thickness Parameters

    Full text link
    Consider a drawing of a graph GG in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of GG, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for graphs of treewidth kk, the maximum thickness and the maximum geometric thickness both equal ⌈k/2⌉\lceil{k/2}\rceil. This says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. Our second main result states that for graphs of treewidth kk, the maximum book thickness equals kk if k≤2k \leq 2 and equals k+1k+1 if k≥3k \geq 3. This refutes a conjecture of Ganley and Heath [Discrete Appl. Math. 109(3):215-221, 2001]. Analogous results are proved for outerthickness, arboricity, and star-arboricity.Comment: A preliminary version of this paper appeared in the "Proceedings of the 13th International Symposium on Graph Drawing" (GD '05), Lecture Notes in Computer Science 3843:129-140, Springer, 2006. The full version was published in Discrete & Computational Geometry 37(4):641-670, 2007. That version contained a false conjecture, which is corrected on page 26 of this versio

    Interval total colorings of graphs

    Full text link
    A total coloring of a graph GG is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An \emph{interval total tt-coloring} of a graph GG is a total coloring of GG with colors 1,2,.Ë™.,t1,2,\...,t such that at least one vertex or edge of GG is colored by ii, i=1,2,.Ë™.,ti=1,2,\...,t, and the edges incident to each vertex vv together with vv are colored by dG(v)+1d_{G}(v)+1 consecutive colors, where dG(v)d_{G}(v) is the degree of the vertex vv in GG. In this paper we investigate some properties of interval total colorings. We also determine exact values of the least and the greatest possible number of colors in such colorings for some classes of graphs.Comment: 23 pages, 1 figur

    Complexity of colouring problems restricted to unichord-free and \{square,unichord\}-free graphs

    Full text link
    A \emph{unichord} in a graph is an edge that is the unique chord of a cycle. A \emph{square} is an induced cycle on four vertices. A graph is \emph{unichord-free} if none of its edges is a unichord. We give a slight restatement of a known structure theorem for unichord-free graphs and use it to show that, with the only exception of the complete graph K4K_4, every square-free, unichord-free graph of maximum degree~3 can be total-coloured with four colours. Our proof can be turned into a polynomial time algorithm that actually outputs the colouring. This settles the class of square-free, unichord-free graphs as a class for which edge-colouring is NP-complete but total-colouring is polynomial

    Knot Graphs

    Get PDF
    We consider the equivalence classes of graphs induced by the unsigned versions of the Reidemeister moves on knot diagrams. Any graph which is reducible by some finite sequence of these moves, to a graph with no edges is called a knot graph. We show that the class of knot graphs strictly contains the set of delta-wye graphs. We prove that the dimension of the intersection of the cycle and cocycle spaces is an effective numerical invariant of these classes
    • …
    corecore