1,176 research outputs found

    Star Colouring of Bounded Degree Graphs and Regular Graphs

    Full text link
    A kk-star colouring of a graph GG is a function f:V(G)→{0,1,…,k−1}f:V(G)\to\{0,1,\dots,k-1\} such that f(u)≠f(v)f(u)\neq f(v) for every edge uvuv of GG, and every bicoloured connected subgraph of GG is a star. The star chromatic number of GG, χs(G)\chi_s(G), is the least integer kk such that GG is kk-star colourable. We prove that χs(G)≥⌈(d+4)/2⌉\chi_s(G)\geq \lceil (d+4)/2\rceil for every dd-regular graph GG with d≥3d\geq 3. We reveal the structure and properties of even-degree regular graphs GG that attain this lower bound. The structure of such graphs GG is linked with a certain type of Eulerian orientations of GG. Moreover, this structure can be expressed in the LC-VSP framework of Telle and Proskurowski (SIDMA, 1997), and hence can be tested by an FPT algorithm with the parameter either treewidth, cliquewidth, or rankwidth. We prove that for p≥2p\geq 2, a 2p2p-regular graph GG is (p+2)(p+2)-star colourable only if n:=∣V(G)∣n:=|V(G)| is divisible by (p+1)(p+2)(p+1)(p+2). For each p≥2p\geq 2 and nn divisible by (p+1)(p+2)(p+1)(p+2), we construct a 2p2p-regular Hamiltonian graph on nn vertices which is (p+2)(p+2)-star colourable. The problem kk-STAR COLOURABILITY takes a graph GG as input and asks whether GG is kk-star colourable. We prove that 3-STAR COLOURABILITY is NP-complete for planar bipartite graphs of maximum degree three and arbitrarily large girth. Besides, it is coNP-hard to test whether a bipartite graph of maximum degree eight has a unique 3-star colouring up to colour swaps. For k≥3k\geq 3, kk-STAR COLOURABILITY of bipartite graphs of maximum degree kk is NP-complete, and does not even admit a 2o(n)2^{o(n)}-time algorithm unless ETH fails

    Few Long Lists for Edge Choosability of Planar Cubic Graphs

    Full text link
    It is known that every loopless cubic graph is 4-edge choosable. We prove the following strengthened result. Let G be a planar cubic graph having b cut-edges. There exists a set F of at most 5b/2 edges of G with the following property. For any function L which assigns to each edge of F a set of 4 colours and which assigns to each edge in E(G)-F a set of 3 colours, the graph G has a proper edge colouring where the colour of each edge e belongs to L(e).Comment: 14 pages, 1 figur

    Hamiltonian cycles and 1-factors in 5-regular graphs

    Full text link
    It is proven that for any integer g≥0g \ge 0 and k∈{0,…,10}k \in \{ 0, \ldots, 10 \}, there exist infinitely many 5-regular graphs of genus gg containing a 1-factorisation with exactly kk pairs of 1-factors that are perfect, i.e. form a hamiltonian cycle. For g=0g = 0, this settles a problem of Kotzig from 1964. Motivated by Kotzig and Labelle's "marriage" operation, we discuss two gluing techniques aimed at producing graphs of high cyclic edge-connectivity. We prove that there exist infinitely many planar 5-connected 5-regular graphs in which every 1-factorisation has zero perfect pairs. On the other hand, by the Four Colour Theorem and a result of Brinkmann and the first author, every planar 4-connected 5-regular graph satisfying a condition on its hamiltonian cycles has a linear number of 1-factorisations each containing at least one perfect pair. We also prove that every planar 5-connected 5-regular graph satisfying a stronger condition contains a 1-factorisation with at most nine perfect pairs, whence, every such graph admitting a 1-factorisation with ten perfect pairs has at least two edge-Kempe equivalence classes. The paper concludes with further results on edge-Kempe equivalence classes in planar 5-regular graphs.Comment: 27 pages, 13 figures; corrected figure

    Filling the complexity gaps for colouring planar and bounded degree graphs.

    Get PDF
    We consider a natural restriction of the List Colouring problem, k-Regular List Colouring, which corresponds to the List Colouring problem where every list has size exactly k. We give a complete classification of the complexity of k-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no 4-cycles and no 5-cycles. We also give a complete classification of the complexity of this problem and a number of related colouring problems for graphs with bounded maximum degree

    Filling the complexity gaps for colouring planar and bounded degree graphs

    Get PDF
    We consider a natural restriction of the List Colouring problem, k-Regular List Colouring, which corresponds to the List Colouring problem where every list has size exactly k. We give a complete classification of the complexity of k-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no 4-cycles and no 5-cycles. We also give a complete classification of the complexity of this problem and a number of related colouring problems for graphs with bounded maximum degree
    • …
    corecore