102 research outputs found

    Bounded colorings of multipartite graphs and hypergraphs

    Full text link
    Let cc be an edge-coloring of the complete nn-vertex graph KnK_n. The problem of finding properly colored and rainbow Hamilton cycles in cc was initiated in 1976 by Bollob\'as and Erd\H os and has been extensively studied since then. Recently it was extended to the hypergraph setting by Dudek, Frieze and Ruci\'nski. We generalize these results, giving sufficient local (resp. global) restrictions on the colorings which guarantee a properly colored (resp. rainbow) copy of a given hypergraph GG. We also study multipartite analogues of these questions. We give (up to a constant factor) optimal sufficient conditions for a coloring cc of the complete balanced mm-partite graph to contain a properly colored or rainbow copy of a given graph GG with maximum degree Δ\Delta. Our bounds exhibit a surprising transition in the rate of growth, showing that the problem is fundamentally different in the regimes Δm\Delta \gg m and Δm\Delta \ll m Our main tool is the framework of Lu and Sz\'ekely for the space of random bijections, which we extend to product spaces

    The Erd\H{o}s-Rothschild problem on edge-colourings with forbidden monochromatic cliques

    Get PDF
    Let k:=(k1,,ks)\mathbf{k} := (k_1,\dots,k_s) be a sequence of natural numbers. For a graph GG, let F(G;k)F(G;\mathbf{k}) denote the number of colourings of the edges of GG with colours 1,,s1,\dots,s such that, for every c{1,,s}c \in \{1,\dots,s\}, the edges of colour cc contain no clique of order kck_c. Write F(n;k)F(n;\mathbf{k}) to denote the maximum of F(G;k)F(G;\mathbf{k}) over all graphs GG on nn vertices. This problem was first considered by Erd\H{o}s and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases. We prove that, for every k\mathbf{k} and nn, there is a complete multipartite graph GG on nn vertices with F(G;k)=F(n;k)F(G;\mathbf{k}) = F(n;\mathbf{k}). Also, for every k\mathbf{k} we construct a finite optimisation problem whose maximum is equal to the limit of log2F(n;k)/(n2)\log_2 F(n;\mathbf{k})/{n\choose 2} as nn tends to infinity. Our final result is a stability theorem for complete multipartite graphs GG, describing the asymptotic structure of such GG with F(G;k)=F(n;k)2o(n2)F(G;\mathbf{k}) = F(n;\mathbf{k}) \cdot 2^{o(n^2)} in terms of solutions to the optimisation problem.Comment: 16 pages, to appear in Math. Proc. Cambridge Phil. So

    Ramsey numbers of ordered graphs

    Full text link
    An ordered graph is a pair G=(G,)\mathcal{G}=(G,\prec) where GG is a graph and \prec is a total ordering of its vertices. The ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is the minimum number NN such that every ordered complete graph with NN vertices and with edges colored by two colors contains a monochromatic copy of G\mathcal{G}. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings Mn\mathcal{M}_n on nn vertices for which R(Mn)\overline{R}(\mathcal{M}_n) is superpolynomial in nn. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is polynomial in the number of vertices of G\mathcal{G} if the bandwidth of G\mathcal{G} is constant or if G\mathcal{G} is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by K\'arolyi, Pach, T\'oth, and Valtr.Comment: 29 pages, 13 figures, to appear in Electronic Journal of Combinatoric

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs

    Integer colorings with forbidden rainbow sums

    Full text link
    For a set of positive integers A[n]A \subseteq [n], an rr-coloring of AA is rainbow sum-free if it contains no rainbow Schur triple. In this paper we initiate the study of the rainbow Erd\H{o}s-Rothchild problem in the context of sum-free sets, which asks for the subsets of [n][n] with the maximum number of rainbow sum-free rr-colorings. We show that for r=3r=3, the interval [n][n] is optimal, while for r8r\geq8, the set [n/2,n][\lfloor n/2 \rfloor, n] is optimal. We also prove a stability theorem for r4r\geq4. The proofs rely on the hypergraph container method, and some ad-hoc stability analysis.Comment: 20 page

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs
    corecore