29,433 research outputs found

    Bounded Max-Colorings of Graphs

    Full text link
    In a bounded max-coloring of a vertex/edge weighted graph, each color class is of cardinality at most bb and of weight equal to the weight of the heaviest vertex/edge in this class. The bounded max-vertex/edge-coloring problems ask for such a coloring minimizing the sum of all color classes' weights. In this paper we present complexity results and approximation algorithms for those problems on general graphs, bipartite graphs and trees. We first show that both problems are polynomial for trees, when the number of colors is fixed, and HbH_b approximable for general graphs, when the bound bb is fixed. For the bounded max-vertex-coloring problem, we show a 17/11-approximation algorithm for bipartite graphs, a PTAS for trees as well as for bipartite graphs when bb is fixed. For unit weights, we show that the known 4/3 lower bound for bipartite graphs is tight by providing a simple 4/3 approximation algorithm. For the bounded max-edge-coloring problem, we prove approximation factors of 32/2b3-2/\sqrt{2b}, for general graphs, min{e,32/b}\min\{e, 3-2/\sqrt{b}\}, for bipartite graphs, and 2, for trees. Furthermore, we show that this problem is NP-complete even for trees. This is the first complexity result for max-coloring problems on trees.Comment: 13 pages, 5 figure

    The min-max edge q-coloring problem

    Full text link
    In this paper we introduce and study a new problem named \emph{min-max edge qq-coloring} which is motivated by applications in wireless mesh networks. The input of the problem consists of an undirected graph and an integer qq. The goal is to color the edges of the graph with as many colors as possible such that: (a) any vertex is incident to at most qq different colors, and (b) the maximum size of a color group (i.e. set of edges identically colored) is minimized. We show the following results: 1. Min-max edge qq-coloring is NP-hard, for any q2q \ge 2. 2. A polynomial time exact algorithm for min-max edge qq-coloring on trees. 3. Exact formulas of the optimal solution for cliques and almost tight bounds for bicliques and hypergraphs. 4. A non-trivial lower bound of the optimal solution with respect to the average degree of the graph. 5. An approximation algorithm for planar graphs.Comment: 16 pages, 5 figure

    Parameterized Algorithms for Load Coloring Problem

    Full text link
    One way to state the Load Coloring Problem (LCP) is as follows. Let G=(V,E)G=(V,E) be graph and let f:V{red,blue}f:V\rightarrow \{{\rm red}, {\rm blue}\} be a 2-coloring. An edge eEe\in E is called red (blue) if both end-vertices of ee are red (blue). For a 2-coloring ff, let rfr'_f and bfb'_f be the number of red and blue edges and let μf(G)=min{rf,bf}\mu_f(G)=\min\{r'_f,b'_f\}. Let μ(G)\mu(G) be the maximum of μf(G)\mu_f(G) over all 2-colorings. We introduce the parameterized problem kk-LCP of deciding whether μ(G)k\mu(G)\ge k, where kk is the parameter. We prove that this problem admits a kernel with at most 7k7k. Ahuja et al. (2007) proved that one can find an optimal 2-coloring on trees in polynomial time. We generalize this by showing that an optimal 2-coloring on graphs with tree decomposition of width tt can be found in time O(2t)O^*(2^t). We also show that either GG is a Yes-instance of kk-LCP or the treewidth of GG is at most 2k2k. Thus, kk-LCP can be solved in time $O^*(4^k).
    corecore