787 research outputs found

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Neural text line extraction in historical documents: a two-stage clustering approach

    Get PDF
    Accessibility of the valuable cultural heritage which is hidden in countless scanned historical documents is the motivation for the presented dissertation. The developed (fully automatic) text line extraction methodology combines state-of-the-art machine learning techniques and modern image processing methods. It demonstrates its quality by outperforming several other approaches on a couple of benchmarking datasets. The method is already being used by a wide audience of researchers from different disciplines and thus contributes its (small) part to the aforementioned goal.Das Erschließen des unermesslichen Wissens, welches in unzähligen gescannten historischen Dokumenten verborgen liegt, bildet die Motivation für die vorgelegte Dissertation. Durch das Verknüpfen moderner Verfahren des maschinellen Lernens und der klassischen Bildverarbeitung wird in dieser Arbeit ein vollautomatisches Verfahren zur Extraktion von Textzeilen aus historischen Dokumenten entwickelt. Die Qualität wird auf verschiedensten Datensätzen im Vergleich zu anderen Ansätzen nachgewiesen. Das Verfahren wird bereits durch eine Vielzahl von Forschern verschiedenster Disziplinen genutzt

    Finding Objects of Interest in Images using Saliency and Superpixels

    Get PDF
    The ability to automatically find objects of interest in images is useful in the areas of compression, indexing and retrieval, re-targeting, and so on. There are two classes of such algorithms – those that find any object of interest with no prior knowledge, independent of the task, and those that find specific objects of interest known a priori. The former class of algorithms tries to detect objects in images that stand-out, i.e. are salient, by virtue of being different from the rest of the image and consequently capture our attention. The detection is generic in this case as there is no specific object we are trying to locate. The latter class of algorithms detects specific known objects of interest and often requires training using features extracted from known examples. In this thesis we address various aspects of finding objects of interest under the topics of saliency detection and object detection. We present two saliency detection algorithms that rely on the principle of center-surround contrast. These two algorithms are shown to be superior to several state-of-the-art techniques in terms of precision and recall measures with respect to a ground truth. They output full-resolution saliency maps, are simpler to implement, and are computationally more efficient than most existing algorithms. We further establish the relevance of our saliency detection algorithms by using them for the known applications of object segmentation and image re-targeting. We first present three different techniques for salient object segmentation using our saliency maps that are based on clustering, graph-cuts, and geodesic distance based labeling. We then demonstrate the use of our saliency maps for a popular technique of content-aware image resizing and compare the result with that of existing methods. Our saliency maps prove to be a much more effective replacement for conventional gradient maps for providing automatic content-awareness. Just as it is important to find regions of interest in images, it is also important to find interesting images within a large collection of images. We therefore extend the notion of saliency detection in images to image databases. We propose an algorithm for finding salient images in a database. Apart from finding such images we also present two novel techniques for creating visually appealing summaries in the form of collages and mosaics. Finally, we address the problem of finding specific known objects of interest in images. Specifically, we deal with the feature extraction step that is a pre-requisite for any technique in this domain. In this context, we first present a superpixel segmentation algorithm that outperforms previous algorithms in terms quantitative measures of under-segmentation error and boundary recall. Our superpixel segmentation algorithm also offers several other advantages over existing algorithms like compactness, uniform size, control on the number of superpixels, and computational efficiency. We prove the effectiveness of our superpixels by deploying them in existing algorithms, specifically, an object class detection technique and a graph based algorithm, and improving their performance. We also present the result of using our superpixels in a technique for detecting mitochondria in noisy medical images

    Selective Darkening Filter and Welding Arc Observation for the Manual Welding Process

    Get PDF
    An optical see-through LCD (GLCD) with a resolution of n x m pixels gives the ability to selectively control the darkening in the welders view. The setup of such a Selective Auto Darkening Filter is developed and its applicability tested. The setup is done by integrating a camera into the welding operation for extracting the welding arc position properly. A prototype of a GLCD taylored for welding is mounted in the welder's view. The extraction of the welding arc position requires an enhanced video acquisition during welding. The observation of scenes with high dynamic contrast is an outstanding problem which occurs if very high differences between the darkest and the brightest spot in a scene occur. The application to welding with its harsh conditions needs the development of supporting hardware. The synchronization of the camera with the flickering light conditions of pulsed welding processes in Gas Metal Arc Welding (GMAW) stabilizes the acquisition process and allows the scene to be flashed precisely if required by compact high power LEDs. The image acquisition is enhanced by merging two different exposed images for the resulting image. These source images cover a wider histogram range than it is possible by using only a single shot image with optimal camera parameters. After testing different standard contrast enhancement algorithm a novel content based algorithm is developed. It segments the image into areas with similar content and enhances these independently

    SelectionConv: Convolutional Neural Networks for Non-rectilinear Image Data

    Full text link
    Convolutional Neural Networks have revolutionized vision applications. There are image domains and representations, however, that cannot be handled by standard CNNs (e.g., spherical images, superpixels). Such data are usually processed using networks and algorithms specialized for each type. In this work, we show that it may not always be necessary to use specialized neural networks to operate on such spaces. Instead, we introduce a new structured graph convolution operator that can copy 2D convolution weights, transferring the capabilities of already trained traditional CNNs to our new graph network. This network can then operate on any data that can be represented as a positional graph. By converting non-rectilinear data to a graph, we can apply these convolutions on these irregular image domains without requiring training on large domain-specific datasets. Results of transferring pre-trained image networks for segmentation, stylization, and depth prediction are demonstrated for a variety of such data forms.Comment: To be presented at ECCV 202
    • …
    corecore