899 research outputs found

    Feature preserving noise removal for binary voxel volumes using 3D surface skeletons

    Get PDF
    Skeletons are well-known descriptors that capture the geometry and topology of 2D and 3D shapes. We leverage these properties by using surface skeletons to remove noise from 3D shapes. For this, we extend an existing method that removes noise, but keeps important (salient) corners for 2D shapes. Our method detects and removes large-scale, complex, and dense multiscale noise patterns that contaminate virtually the entire surface of a given 3D shape, while recovering its main (salient) edges and corners. Our method can treat any (voxelized) 3D shapes and surface-noise types, is computationally scalable, and has one easy-to-set parameter. We demonstrate the added-value of our approach by comparing our results with several known 3D shape denoising methods

    Super-resolution:A comprehensive survey

    Get PDF

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Non-Rigid Registration via Global to Local Transformation

    Get PDF
    Non-rigid point set and image registration are key problems in plenty of computer vision and pattern recognition tasks. Typically, the non-rigid registration can be formulated as an optimization problem. However, registration accuracy is limited by local optimum. To solve this problem, we propose a method with global to local transformation for non-rigid point sets registration and it also can be used to infrared (IR) and visible (VIS) image registration. Firstly, an objective function based on Gaussian fields is designed to make a problem of non-rigid registration transform into an optimization problem. A global transformation model, which can describe the regular pattern of non-linear deformation between point sets, is then proposed to achieve coarse registration in global scale. Finally, with the results of coarse registration as initial value, a local transformation model is employed to implement fine registration by using local feature. Meanwhile, the optimal global and local transformation models estimated from edge points of IR and VIS image pairs are used to achieve non-rigid image registration. The qualitative and quantitative comparisons demonstrate that the proposed method has good performance under various types of distortions. Moreover, our method can also produce accurate results of IR and VIS image registration
    corecore