763 research outputs found

    Extensions of Laplacian Eigenmaps for Manifold Learning

    Get PDF
    This thesis deals with the theory and practice of manifold learning, especially as they relate to the problem of classification. We begin with a well known algorithm, Laplacian Eigenmaps, and then proceed to extend it in two independent directions. First, we generalize this algorithm to allow for the use of partially labeled data, and establish the theoretical foundation of the resulting semi-supervised learning method. Second, we consider two ways of accelerating the most computationally intensive step of Laplacian Eigenmaps, the construction of an adjacency graph. Both of them produce high quality approximations, and we conclude by showing that they work well together to achieve a dramatic reduction in computational time

    Review of Extreme Multilabel Classification

    Full text link
    Extreme multilabel classification or XML, is an active area of interest in machine learning. Compared to traditional multilabel classification, here the number of labels is extremely large, hence, the name extreme multilabel classification. Using classical one versus all classification wont scale in this case due to large number of labels, same is true for any other classifiers. Embedding of labels as well as features into smaller label space is an essential first step. Moreover, other issues include existence of head and tail labels, where tail labels are labels which exist in relatively smaller number of given samples. The existence of tail labels creates issues during embedding. This area has invited application of wide range of approaches ranging from bit compression motivated from compressed sensing, tree based embeddings, deep learning based latent space embedding including using attention weights, linear algebra based embeddings such as SVD, clustering, hashing, to name a few. The community has come up with a useful set of metrics to identify correctly the prediction for head or tail labels.Comment: 46 pages, 13 figure

    Geometric Variational Models for Inverse Problems in Imaging

    Get PDF
    This dissertation develops geometric variational models for different inverse problems in imaging that are ill-posed, designing at the same time efficient numerical algorithms to compute their solutions. Variational methods solve inverse problems by the following two steps: formulation of a variational model as a minimization problem, and design of a minimization algorithm to solve it. This dissertation is organized in the same manner. It first formulates minimization problems associated with geometric models for different inverse problems in imaging, and it then designs efficient minimization algorithms to compute their solutions. The minimization problem summarizes both the data available from the measurements and the prior knowledge about the solution in its objective functional; this naturally leads to the combination of a measurement or data term and a prior term. Geometry can play a role in any of these terms, depending on the properties of the data acquisition system or the object being imaged. In this context, each chapter of this dissertation formulates a variational model that includes geometry in a different manner in the objective functional, depending on the inverse problem at hand. In the context of compressed sensing, the first chapter exploits the geometric properties of images to include an alignment term in the sparsity prior of compressed sensing; this additional prior term aligns the normal vectors of the level curves of the image with the reconstructed signal, and it improves the quality of reconstruction. A two-step recovery method is designed for that purpose: first, it estimates the normal vectors to the level curves of the image; second, it reconstructs an image matching the compressed sensing measurements, the geometric alignment of normals, and the sparsity constraint of compressed sensing. The proposed method is extended to non-local operators in graphs for the recovery of textures. The harmonic active contours of Chapter 2 make use of differential geometry to interpret the segmentation of an image as a minimal surface manifold. In this case, geometry is exploited in both the measurement term, by coupling the different image channels in a robust edge detector, and in the prior term, by imposing smoothness in the segmentation. The proposed technique generalizes existing active contours to higher dimensional spaces and non-flat images; in the plane, it improves the segmentation of images with inhomogeneities and weak edges. Shape-from-shading is investigated in Chapter 3 for the reconstruction of a silicon wafer from images of printed circuits taken with a scanning electron microscope. In this case, geometry plays a role in the image acquisition system, that is, in the measurement term of the objective functional. The prior term involves a smoothness constraint on the surface and a shape prior on the expected pattern in the circuit. The proposed reconstruction method also estimates a deformation field between the ideal pattern design and the reconstructed surface, substituting the model of shape variability necessary in shape priors with an elastic deformation field that quantifies deviations in the manufacturing process. Finally, the techniques used for the design of efficient numerical algorithms are explained with an example problem based on the level set method. To this purpose, Chapter 4 develops an efficient algorithm for the level set method when the level set function is constrained to remain a signed distance function. The distance function is preserved by the introduction of an explicit constraint in the minimization problem, the minimization algorithm is efficient by the adequate use of variable-splitting and augmented Lagrangian techniques. These techniques introduce additional variables, constraints, and Lagrange multipliers in the original minimization problem, and they decompose it into sub-optimization problems that are simple and can be efficiently solved. As a result, the proposed algorithm is five to six times faster than the original algorithm for the level set method

    Understanding the Structure of 3D Shapes

    Get PDF
    Compact representations of three dimensional objects are very often used in computer graphics to create effective ways to analyse, manipulate and transmit 3D models. Their ability to abstract from the concrete shapes and expose their structure is important in a number of applications, spanning from computer animation, to medicine, to physical simulations. This thesis will investigate new methods for the generation of compact shape representations. In the first part, the problem of computing optimal PolyCube base complexes will be considered. PolyCubes are orthogonal polyhedra used in computer graphics to map both surfaces and volumes. Their ability to resemble the original models and at the same time expose a very simple and regular structure is important in a number of applications, such as texture mapping, spline fitting and hex-meshing. The second part will focus on medial descriptors. In particular, two new algorithms for the generation of curve-skeletons will be presented. These methods are completely based on the visual appearance of the input, therefore they are independent from the type, number and quality of the primitives used to describe a shape, determining, thus, an advancement to the state of the art in the field

    Understanding the Structure of 3D Shapes

    Get PDF
    Compact representations of three dimensional objects are very often used in computer graphics to create effective ways to analyse, manipulate and transmit 3D models. Their ability to abstract from the concrete shapes and expose their structure is important in a number of applications, spanning from computer animation, to medicine, to physical simulations. This thesis will investigate new methods for the generation of compact shape representations. In the first part, the problem of computing optimal PolyCube base complexes will be considered. PolyCubes are orthogonal polyhedra used in computer graphics to map both surfaces and volumes. Their ability to resemble the original models and at the same time expose a very simple and regular structure is important in a number of applications, such as texture mapping, spline fitting and hex-meshing. The second part will focus on medial descriptors. In particular, two new algorithms for the generation of curve-skeletons will be presented. These methods are completely based on the visual appearance of the input, therefore they are independent from the type, number and quality of the primitives used to describe a shape, determining, thus, an advancement to the state of the art in the field

    The 2nd Conference of PhD Students in Computer Science

    Get PDF

    Remote access computed tomography colonography

    Get PDF
    This thesis presents a novel framework for remote access Computed Tomography Colonography (CTC). The proposed framework consists of several integrated components: medical image data delivery, 2D image processing, 3D visualisation, and feedback provision. Medical image data sets are notoriously large and preserving the integrity of the patient data is essential. This makes real-time delivery and visualisation a key challenge. The main contribution of this work is the development of an efficient, lossless compression scheme to minimise the size of the data to be transmitted, thereby alleviating transmission time delays. The scheme utilises prior knowledge of anatomical information to divide the data into specific regions. An optimised compression method for each anatomical region is then applied. An evaluation of this compression technique shows that the proposed ‘divide and conquer’ approach significantly improves upon the level of compression achieved using more traditional global compression schemes. Another contribution of this work resides in the development of an improved volume rendering technique that provides real-time 3D visualisations of regions within CTC data sets. Unlike previous hardware acceleration methods which rely on dedicated devices, this approach employs a series of software acceleration techniques based on the characteristic properties of CTC data. A quantitative and qualitative evaluation indicates that the proposed method achieves real-time performance on a low-cost PC platform without sacrificing any image quality. Fast data delivery and real-time volume rendering represent the key features that are required for remote access CTC. These features are ultimately combined with other relevant CTC functionality to create a comprehensive, high-performance CTC framework, which makes remote access CTC feasible, even in the case of standard Web clients with low-speed data connections

    Time-varying volume visualization

    Get PDF
    Volume rendering is a very active research field in Computer Graphics because of its wide range of applications in various sciences, from medicine to flow mechanics. In this report, we survey a state-of-the-art on time-varying volume rendering. We state several basic concepts and then we establish several criteria to classify the studied works: IVR versus DVR, 4D versus 3D+time, compression techniques, involved architectures, use of parallelism and image-space versus object-space coherence. We also address other related problems as transfer functions and 2D cross-sections computation of time-varying volume data. All the papers reviewed are classified into several tables based on the mentioned classification and, finally, several conclusions are presented.Preprin

    Model-based X-ray CT Image and Light Field Reconstruction Using Variable Splitting Methods.

    Full text link
    Model-based image reconstruction (MBIR) is a powerful technique for solving ill-posed inverse problems. Compared with direct methods, it can provide better estimates from noisy measurements and from incomplete data, at the cost of much longer computation time. In this work, we focus on accelerating and applying MBIR for solving reconstruction problems, including X-ray computed tomography (CT) image reconstruction and light field reconstruction, using variable splitting based on the augmented Lagrangian (AL) methods. For X-ray CT image reconstruction, we combine the AL method and ordered subsets (OS), a well-known technique in the medical imaging literature for accelerating tomographic reconstruction, by considering a linearized variant of the AL method and propose a fast splitting-based ordered-subset algorithm, OS-LALM, for solving X-ray CT image reconstruction problems with penalized weighted least-squares (PWLS) criterion. Practical issues such as the non-trivial parameter selection of AL methods and remarkable memory overhead when considering the finite difference image variable splitting are carefully studied, and several variants of the proposed algorithm are investigated for solving practical model-based X-ray CT image reconstruction problems. Experimental results show that the proposed algorithm significantly accelerates the convergence of X-ray CT image reconstruction with negligible overhead and greatly reduces the noise-like OS artifacts in the reconstructed image when using many subsets for OS acceleration. For light field reconstruction, considering decomposing the camera imaging process into a linear convolution and a non-linear slicing operations for faster forward projection, we propose to reconstruct light field from a sequence of photos taken with different focus settings, i.e., a focal stack, using an alternating direction method of multipliers (ADMM). To improve the quality of the reconstructed light field, we also propose a signal-independent sparsifying transform by considering the elongated structure of light fields. Flatland simulation results show that our proposed sparse light field prior produces high resolution light field with fine details compared with other existing sparse priors for natural images.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108981/1/hungnien_1.pd
    • …
    corecore