164 research outputs found

    New infinite family of regular edge-isoperimetric graphs

    Full text link
    We introduce a new infinite family of regular graphs admitting nested solutions in the edge-isoperimetric problem for all their Cartesian powers. The obtained results include as special cases most of previously known results in this area

    Reflect-Push Methods Part I: Two Dimensional Techniques

    Full text link
    We determine all maximum weight downsets in the product of two chains, where the weight function is a strictly increasing function of the rank. Many discrete isoperimetric problems can be reduced to the maximum weight downset problem. Our results generalize Lindsay's edge-isoperimetric theorem in two dimensions in several directions. They also imply and strengthen (in several directions) a result of Ahlswede and Katona concerning graphs with maximal number of adjacent pairs of edges. We find all optimal shifted graphs in the Ahlswede-Katona problem. Furthermore, the results of Ahlswede-Katona are extended to posets with a rank increasing and rank constant weight function. Our results also strengthen a special case of a recent result by Keough and Radcliffe concerning graphs with the fewest matchings. All of these results are achieved by applications of a key lemma that we call the reflect-push method. This method is geometric and combinatorial. Most of the literature on edge-isoperimetric inequalities focuses on finding a solution, and there are no general methods for finding all possible solutions. Our results give a general approach for finding all compressed solutions for the above edge-isoperimetric problems. By using the Ahlswede-Cai local-global principle, one can conclude that lexicographic solutions are optimal for many cases of higher dimensional isoperimetric problems. With this and our two dimensional results we can prove Lindsay's edge-isoperimetric inequality in any dimension. Furthermore, our results show that lexicographic solutions are the unique solutions for which compression techniques can be applied in this general setting

    Pull-Push Method: A new approach to Edge-Isoperimetric Problems

    Full text link
    We prove a generalization of the Ahlswede-Cai local-global principle. A new technique to handle edge-isoperimetric problems is introduced which we call the pull-push method. Our main result includes all previously published results in this area as special cases with the only exception of the edge-isoperimetric problem for grids. With this we partially answer a question of Harper on local-global principles. We also describe a strategy for further generalization of our results so that the case of grids would be covered, which would completely settle Harper's question

    On the spectrum of hypergraphs

    Full text link
    Here we study the spectral properties of an underlying weighted graph of a non-uniform hypergraph by introducing different connectivity matrices, such as adjacency, Laplacian and normalized Laplacian matrices. We show that different structural properties of a hypergrpah, can be well studied using spectral properties of these matrices. Connectivity of a hypergraph is also investigated by the eigenvalues of these operators. Spectral radii of the same are bounded by the degrees of a hypergraph. The diameter of a hypergraph is also bounded by the eigenvalues of its connectivity matrices. We characterize different properties of a regular hypergraph characterized by the spectrum. Strong (vertex) chromatic number of a hypergraph is bounded by the eigenvalues. Cheeger constant on a hypergraph is defined and we show that it can be bounded by the smallest nontrivial eigenvalues of Laplacian matrix and normalized Laplacian matrix, respectively, of a connected hypergraph. We also show an approach to study random walk on a (non-uniform) hypergraph that can be performed by analyzing the spectrum of transition probability operator which is defined on that hypergraph. Ricci curvature on hypergraphs is introduced in two different ways. We show that if the Laplace operator, Δ\Delta, on a hypergraph satisfies a curvature-dimension type inequality CD(m,K)CD (\mathbf{m}, \mathbf{K}) with m>1\mathbf{m}>1 and K>0\mathbf{K}>0 then any non-zero eigenvalue of Δ- \Delta can be bounded below by mKm1 \frac{ \mathbf{m} \mathbf{K}}{ \mathbf{m} -1 } . Eigenvalues of a normalized Laplacian operator defined on a connected hypergraph can be bounded by the Ollivier's Ricci curvature of the hypergraph
    corecore