1,947 research outputs found

    Clique coloring B1B_1-EPG graphs

    Full text link
    We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 22-clique colorable. In this paper we prove that B1B_1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 44-clique colorable. Moreover, given a B1B_1-EPG representation of a graph, we provide a linear time algorithm that constructs a 44-clique coloring of it.Comment: 9 Page

    Computing maximum cliques in B2B_2-EPG graphs

    Full text link
    EPG graphs, introduced by Golumbic et al. in 2009, are edge-intersection graphs of paths on an orthogonal grid. The class BkB_k-EPG is the subclass of EPG graphs where the path on the grid associated to each vertex has at most kk bends. Epstein et al. showed in 2013 that computing a maximum clique in B1B_1-EPG graphs is polynomial. As remarked in [Heldt et al., 2014], when the number of bends is at least 44, the class contains 22-interval graphs for which computing a maximum clique is an NP-hard problem. The complexity status of the Maximum Clique problem remains open for B2B_2 and B3B_3-EPG graphs. In this paper, we show that we can compute a maximum clique in polynomial time in B2B_2-EPG graphs given a representation of the graph. Moreover, we show that a simple counting argument provides a 2(k+1){2(k+1)}-approximation for the coloring problem on BkB_k-EPG graphs without knowing the representation of the graph. It generalizes a result of [Epstein et al, 2013] on B1B_1-EPG graphs (where the representation was needed)

    Proper circular arc graphs as intersection graphs of paths on a grid

    Full text link
    In this paper we present a characterisation, by an infinite family of minimal forbidden induced subgraphs, of proper circular arc graphs which are intersection graphs of paths on a grid, where each path has at most one bend (turn)

    On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid

    Full text link
    Golumbic, Lipshteyn and Stern \cite{Golumbic-epg} proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer kk, BkB_k-EPG graphs are defined as EPG graphs admitting a model in which each path has at most kk bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4B_4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that every circular-arc graph is B3B_3-EPG, and that there exist circular-arc graphs which are not B2B_2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in a rectangle of the grid), we obtain EPR (edge intersection of path in a rectangle) representations. We may define BkB_k-EPR graphs, k0k\geq 0, the same way as BkB_k-EPG graphs. Circular-arc graphs are clearly B4B_4-EPR graphs and we will show that there exist circular-arc graphs that are not B3B_3-EPR graphs. We also show that normal circular-arc graphs are B2B_2-EPR graphs and that there exist normal circular-arc graphs that are not B1B_1-EPR graphs. Finally, we characterize B1B_1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs

    Edge Intersection Graphs of L-Shaped Paths in Grids

    Full text link
    In this paper we continue the study of the edge intersection graphs of one (or zero) bend paths on a rectangular grid. That is, the edge intersection graphs where each vertex is represented by one of the following shapes: \llcorner,\ulcorner, \urcorner, \lrcorner, and we consider zero bend paths (i.e., | and -) to be degenerate \llcorners. These graphs, called B1B_1-EPG graphs, were first introduced by Golumbic et al (2009). We consider the natural subclasses of B1B_1-EPG formed by the subsets of the four single bend shapes (i.e., {\llcorner}, {\llcorner,\ulcorner}, {\llcorner,\urcorner}, and {\llcorner,\ulcorner,\urcorner}) and we denote the classes by [\llcorner], [\llcorner,\ulcorner], [\llcorner,\urcorner], and [\llcorner,\ulcorner,\urcorner] respectively. Note: all other subsets are isomorphic to these up to 90 degree rotation. We show that testing for membership in each of these classes is NP-complete and observe the expected strict inclusions and incomparability (i.e., [\llcorner] \subsetneq [\llcorner,\ulcorner], [\llcorner,\urcorner] \subsetneq [\llcorner,\ulcorner,\urcorner] \subsetneq B1B_1-EPG; also, [\llcorner,\ulcorner] is incomparable with [\llcorner,\urcorner]). Additionally, we give characterizations and polytime recognition algorithms for special subclasses of Split \cap [\llcorner].Comment: 14 pages, to appear in DAM special issue for LAGOS'1

    EPG-representations with small grid-size

    Full text link
    In an EPG-representation of a graph GG each vertex is represented by a path in the rectangular grid, and (v,w)(v,w) is an edge in GG if and only if the paths representing vv an ww share a grid-edge. Requiring paths representing edges to be x-monotone or, even stronger, both x- and y-monotone gives rise to three natural variants of EPG-representations, one where edges have no monotonicity requirements and two with the aforementioned monotonicity requirements. The focus of this paper is understanding how small a grid can be achieved for such EPG-representations with respect to various graph parameters. We show that there are mm-edge graphs that require a grid of area Ω(m)\Omega(m) in any variant of EPG-representations. Similarly there are pathwidth-kk graphs that require height Ω(k)\Omega(k) and area Ω(kn)\Omega(kn) in any variant of EPG-representations. We prove a matching upper bound of O(kn)O(kn) area for all pathwidth-kk graphs in the strongest model, the one where edges are required to be both x- and y-monotone. Thus in this strongest model, the result implies, for example, O(n)O(n), O(nlogn)O(n \log n) and O(n3/2)O(n^{3/2}) area bounds for bounded pathwidth graphs, bounded treewidth graphs and all classes of graphs that exclude a fixed minor, respectively. For the model with no restrictions on the monotonicity of the edges, stronger results can be achieved for some graph classes, for example an O(n)O(n) area bound for bounded treewidth graphs and O(nlog2n)O(n \log^2 n) bound for graphs of bounded genus.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Small Superpatterns for Dominance Drawing

    Full text link
    We exploit the connection between dominance drawings of directed acyclic graphs and permutations, in both directions, to provide improved bounds on the size of universal point sets for certain types of dominance drawing and on superpatterns for certain natural classes of permutations. In particular we show that there exist universal point sets for dominance drawings of the Hasse diagrams of width-two partial orders of size O(n^{3/2}), universal point sets for dominance drawings of st-outerplanar graphs of size O(n\log n), and universal point sets for dominance drawings of directed trees of size O(n^2). We show that 321-avoiding permutations have superpatterns of size O(n^{3/2}), riffle permutations (321-, 2143-, and 2413-avoiding permutations) have superpatterns of size O(n), and the concatenations of sequences of riffles and their inverses have superpatterns of size O(n\log n). Our analysis includes a calculation of the leading constants in these bounds.Comment: ANALCO 2014, This version fixes an error in the leading constant of the 321-superpattern siz
    corecore