950 research outputs found

    Edge-Disjoint Paths in Planar Graphs

    Get PDF
    We study the maximum edge-disjoint paths problem (MEDP). We are given a graph G = (V,E) and a set Τ = {s1t1, s2t2, . . . , sktk} of pairs of vertices: the objective is to find the maximum number of pairs in Τ that can be connected via edge-disjoint paths. Our main result is a poly-logarithmic approximation for MEDP on undirected planar graphs if a congestion of 2 is allowed, that is, we allow up to 2 paths to share an edge. Prior to our work, for any constant congestion, only a polynomial-factor approximation was known for planar graphs although much stronger results are known for some special cases such as grids and grid-like graphs. We note that the natural multicommodity flow relaxation of the problem has an integrality gap of Ω(√|V|) even on planar graphs when no congestion is allowed. Our starting point is the same relaxation and our result implies that the integrality gap shrinks to a poly-logarithmic factor once 2 paths are allowed per edge. Our result also extends to the unsplittable flow problem and the maximum integer multicommodity flow problem. A set X ⊆ V is well-linked if for each S ⊂ V , |δ(S)| ≥ min{|S ∩ X|, |(V - S) ∩ X|}. The heart of our approach is to show that in any undirected planar graph, given any matching M on a well-linked set X, we can route Ω(|M|) pairs in M with a congestion of 2. Moreover, all pairs in M can be routed with constant congestion for a sufficiently large constant. This results also yields a different proof of a theorem of Klein, Plotkin, and Rao that shows an O(1) maxflow-mincut gap for uniform multicommodity flow instances in planar graphs. The framework developed in this paper applies to general graphs as well. If a certain graph theoretic conjecture is true, it will yield poly-logarithmic integrality gap for MEDP with constant congestion

    Maximum Edge-Disjoint Paths in kk-sums of Graphs

    Full text link
    We consider the approximability of the maximum edge-disjoint paths problem (MEDP) in undirected graphs, and in particular, the integrality gap of the natural multicommodity flow based relaxation for it. The integrality gap is known to be Ω(n)\Omega(\sqrt{n}) even for planar graphs due to a simple topological obstruction and a major focus, following earlier work, has been understanding the gap if some constant congestion is allowed. In this context, it is natural to ask for which classes of graphs does a constant-factor constant-congestion property hold. It is easy to deduce that for given constant bounds on the approximation and congestion, the class of "nice" graphs is nor-closed. Is the converse true? Does every proper minor-closed family of graphs exhibit a constant factor, constant congestion bound relative to the LP relaxation? We conjecture that the answer is yes. One stumbling block has been that such bounds were not known for bounded treewidth graphs (or even treewidth 3). In this paper we give a polytime algorithm which takes a fractional routing solution in a graph of bounded treewidth and is able to integrally route a constant fraction of the LP solution's value. Note that we do not incur any edge congestion. Previously this was not known even for series parallel graphs which have treewidth 2. The algorithm is based on a more general argument that applies to kk-sums of graphs in some graph family, as long as the graph family has a constant factor, constant congestion bound. We then use this to show that such bounds hold for the class of kk-sums of bounded genus graphs

    Routing Symmetric Demands in Directed Minor-Free Graphs with Constant Congestion

    Get PDF
    The problem of routing in graphs using node-disjoint paths has received a lot of attention and a polylogarithmic approximation algorithm with constant congestion is known for undirected graphs [Chuzhoy and Li 2016] and [Chekuri and Ene 2013]. However, the problem is hard to approximate within polynomial factors on directed graphs, for any constant congestion [Chuzhoy, Kim and Li 2016]. Recently, [Chekuri, Ene and Pilipczuk 2016] have obtained a polylogarithmic approximation with constant congestion on directed planar graphs, for the special case of symmetric demands. We extend their result by obtaining a polylogarithmic approximation with constant congestion on arbitrary directed minor-free graphs, for the case of symmetric demands

    On Routing Disjoint Paths in Bounded Treewidth Graphs

    Get PDF
    We study the problem of routing on disjoint paths in bounded treewidth graphs with both edge and node capacities. The input consists of a capacitated graph GG and a collection of kk source-destination pairs M={(s1,t1),…,(sk,tk)}\mathcal{M} = \{(s_1, t_1), \dots, (s_k, t_k)\}. The goal is to maximize the number of pairs that can be routed subject to the capacities in the graph. A routing of a subset M′\mathcal{M}' of the pairs is a collection P\mathcal{P} of paths such that, for each pair (si,ti)∈M′(s_i, t_i) \in \mathcal{M}', there is a path in P\mathcal{P} connecting sis_i to tit_i. In the Maximum Edge Disjoint Paths (MaxEDP) problem, the graph GG has capacities cap(e)\mathrm{cap}(e) on the edges and a routing P\mathcal{P} is feasible if each edge ee is in at most cap(e)\mathrm{cap}(e) of the paths of P\mathcal{P}. The Maximum Node Disjoint Paths (MaxNDP) problem is the node-capacitated counterpart of MaxEDP. In this paper we obtain an O(r3)O(r^3) approximation for MaxEDP on graphs of treewidth at most rr and a matching approximation for MaxNDP on graphs of pathwidth at most rr. Our results build on and significantly improve the work by Chekuri et al. [ICALP 2013] who obtained an O(r⋅3r)O(r \cdot 3^r) approximation for MaxEDP

    Packing Directed Circuits Quarter-Integrally

    Get PDF
    • …
    corecore