19,465 research outputs found

    An Improved Observation Model for Super-Resolution under Affine Motion

    Full text link
    Super-resolution (SR) techniques make use of subpixel shifts between frames in an image sequence to yield higher-resolution images. We propose an original observation model devoted to the case of non isometric inter-frame motion as required, for instance, in the context of airborne imaging sensors. First, we describe how the main observation models used in the SR literature deal with motion, and we explain why they are not suited for non isometric motion. Then, we propose an extension of the observation model by Elad and Feuer adapted to affine motion. This model is based on a decomposition of affine transforms into successive shear transforms, each one efficiently implemented by row-by-row or column-by-column 1-D affine transforms. We demonstrate on synthetic and real sequences that our observation model incorporated in a SR reconstruction technique leads to better results in the case of variable scale motions and it provides equivalent results in the case of isometric motions

    EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow

    Get PDF
    We propose a novel approach for optical flow estimation , targeted at large displacements with significant oc-clusions. It consists of two steps: i) dense matching by edge-preserving interpolation from a sparse set of matches; ii) variational energy minimization initialized with the dense matches. The sparse-to-dense interpolation relies on an appropriate choice of the distance, namely an edge-aware geodesic distance. This distance is tailored to handle occlusions and motion boundaries -- two common and difficult issues for optical flow computation. We also propose an approximation scheme for the geodesic distance to allow fast computation without loss of performance. Subsequent to the dense interpolation step, standard one-level variational energy minimization is carried out on the dense matches to obtain the final flow estimation. The proposed approach, called Edge-Preserving Interpolation of Correspondences (EpicFlow) is fast and robust to large displacements. It significantly outperforms the state of the art on MPI-Sintel and performs on par on Kitti and Middlebury

    Spectral filtering for the reduction of the Gibbs phenomenon of polynomial approximation methods on Lissajous curves with applications in MPI

    Get PDF
    Polynomial interpolation and approximation methods on sampling points along Lissajous curves using Chebyshev series is an effective way for a fast image reconstruction in Magnetic Particle Imaging. Due to the nature of spectral methods, a Gibbs phenomenon occurs in the reconstructed image if the underlying function has discontinuities. A possible solution for this problem are spectral filtering methods acting on the coefficients of the approximating polynomial. In this work, after a description of the Gibbs phenomenon and classical filtering techniques in one and several dimensions, we present an adaptive spectral filtering process for the resolution of this phenomenon and for an improved approximation of the underlying function or image. In this adaptive filtering technique, the spectral filter depends on the distance of a spatial point to the nearest discontinuity. We show the effectiveness of this filtering approach in theory, in numerical simulations as well as in the application in Magnetic Particle Imaging
    • …
    corecore