1,034 research outputs found

    Edge-detected guided morphological filter for image sharpening

    Get PDF
    A new edge-guided morphological filter is proposed to sharpen digital images. This is done by detecting the positions of the edges and then applying a class of morphological filtering. Motivated by the success of threshold decomposition, gradient-based operators are used to detect the locations of the edges. A morphological filter is used to sharpen these detected edges. Experimental results demonstrate that the performance of these detected edge deblurring filters is superior to that of other sharpener-type filters

    Edge-detected guided morphological filter for image sharpening

    Get PDF
    A new edge-guided morphological filter is proposed to sharpen digital images. This is done by detecting the positions of the edges and then applying a class of morphological filtering. Motivated by the success of threshold decomposition, gradient-based operators are used to detect the locations of the edges. A morphological filter is used to sharpen these detected edges. Experimental results demonstrate that the performance of these detected edge deblurring filters is superior to that of other sharpener-type filters

    Medical image enhancement using threshold decomposition driven adaptive morphological filter

    Get PDF
    One of the most common degradations in medical images is their poor contrast quality. This suggests the use of contrast enhancement methods as an attempt to modify the intensity distribution of the image. In this paper, a new edge detected morphological filter is proposed to sharpen digital medical images. This is done by detecting the positions of the edges and then applying a class of morphological filtering. Motivated by the success of threshold decomposition, gradientbased operators are used to detect the locations of the edges. A morphological filter is used to sharpen these detected edges. Experimental results demonstrate that the detected edge deblurring filter improved the visibility and perceptibility of various embedded structures in digital medical images. Moreover, the performance of the proposed filter is superior to that of other sharpener-type filters

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    Image Enhancement in Foggy Images using Dark Channel Prior and Guided Filter

    Get PDF
    Haze is very apparent in images shot during periods of bad weather (fog). The image's clarity and readability are both diminished as a result. As part of this work, we suggest a method for improving the quality of the hazy image and for identifying any objects hidden inside it. To address this, we use the picture enhancement techniques of Dark Channel Prior and Guided Filter. The Saliency map is then used to segment the improved image and identify passing vehicles. Lastly, we describe our method for calculating the actual distance in units from a camera-equipped vehicle of an item (another vehicle).Our proposed solution can warn the driver based on the distance to help them prevent an accident. Our suggested technology improves images and accurately detects vehicles nearly 100% of the time

    Brain Cancer Detection using Neuro Fuzzy Logic

    Get PDF
    This paper presents an approach of computer-aided diagnosis for early prediction of cancer cells in brain. It extracts the texture from the given brain MRI sample.It uses image processing techniques followed by neuro classification for prediction of Cancer for a given MRI sample. A neuro fuzzy approach is used for the recognition of the extracted region. The implementation is observed on various types of MRI images with different types of cancer regions

    Adaptive Methods for Point Cloud and Mesh Processing

    Get PDF
    Point clouds and 3D meshes are widely used in numerous applications ranging from games to virtual reality to autonomous vehicles. This dissertation proposes several approaches for noise removal and calibration of noisy point cloud data and 3D mesh sharpening methods. Order statistic filters have been proven to be very successful in image processing and other domains as well. Different variations of order statistics filters originally proposed for image processing are extended to point cloud filtering in this dissertation. A brand-new adaptive vector median is proposed in this dissertation for removing noise and outliers from noisy point cloud data. The major contributions of this research lie in four aspects: 1) Four order statistic algorithms are extended, and one adaptive filtering method is proposed for the noisy point cloud with improved results such as preserving significant features. These methods are applied to standard models as well as synthetic models, and real scenes, 2) A hardware acceleration of the proposed method using Microsoft parallel pattern library for filtering point clouds is implemented using multicore processors, 3) A new method for aerial LIDAR data filtering is proposed. The objective is to develop a method to enable automatic extraction of ground points from aerial LIDAR data with minimal human intervention, and 4) A novel method for mesh color sharpening using the discrete Laplace-Beltrami operator is proposed. Median and order statistics-based filters are widely used in signal processing and image processing because they can easily remove outlier noise and preserve important features. This dissertation demonstrates a wide range of results with median filter, vector median filter, fuzzy vector median filter, adaptive mean, adaptive median, and adaptive vector median filter on point cloud data. The experiments show that large-scale noise is removed while preserving important features of the point cloud with reasonable computation time. Quantitative criteria (e.g., complexity, Hausdorff distance, and the root mean squared error (RMSE)), as well as qualitative criteria (e.g., the perceived visual quality of the processed point cloud), are employed to assess the performance of the filters in various cases corrupted by different noisy models. The adaptive vector median is further optimized for denoising or ground filtering aerial LIDAR data point cloud. The adaptive vector median is also accelerated on multi-core CPUs using Microsoft Parallel Patterns Library. In addition, this dissertation presents a new method for mesh color sharpening using the discrete Laplace-Beltrami operator, which is an approximation of second order derivatives on irregular 3D meshes. The one-ring neighborhood is utilized to compute the Laplace-Beltrami operator. The color for each vertex is updated by adding the Laplace-Beltrami operator of the vertex color weighted by a factor to its original value. Different discretizations of the Laplace-Beltrami operator have been proposed for geometrical processing of 3D meshes. This work utilizes several discretizations of the Laplace-Beltrami operator for sharpening 3D mesh colors and compares their performance. Experimental results demonstrated the effectiveness of the proposed algorithms

    Extraction of low cost houses from a high spatial resolution satellite imagery using Canny edge detection filter

    Get PDF
    Since its democratic dispensation in 1994, the South African government enacted a number of legislative and policy interventions aimed at availing equal housing opportunities to the previously marginalized citizens. Mismanagement and unreliable reporting has been widely reported in publicly funded housing programmes which necessitated the government to audit and monitor housing development projects in municipalities using more robust and independent methodologies. The objective of this study was therefore to test and demonstrate the effectiveness of high spatial resolution satellite imagery in validating the presence of government funded houses using an object-oriented classification technique that applies a Canny edge detection filter. The results of this study demonstrate that object-orientated classification applied on pan-sharpened SPOT 6 satellite imagery can be used to conduct a reliable inventory and validate the number of houses. The application of the multi-resolution segmentation and Canny edge detection filtering technique proved to be an effective means of mapping individual houses as shown by the high detection accuracy of 99% and quality percentage of 96%.Keywords: Houses, Remote Sensing, SPOT 6, Canny edge detection, Multi-resolution Segmentation, Object-Oriented Classificatio
    • …
    corecore