100 research outputs found

    Face Detection and Recognition using Skin Segmentation and Elastic Bunch Graph Matching

    Get PDF
    Recently, face detection and recognition is attracting a lot of interest in areas such as network security, content indexing and retrieval, and video compression, because ‘people’ are the object of attention in a lot of video or images. To perform such real-time detection and recognition, novel algorithms are needed, which better current efficiencies and speeds. This project is aimed at developing an efficient algorithm for face detection and recognition. This project is divided into two parts, the detection of a face from a complex environment and the subsequent recognition by comparison. For the detection portion, we present an algorithm based on skin segmentation, morphological operators and template matching. The skin segmentation isolates the face-like regions in a complex image and the following operations of morphology and template matching help reject false matches and extract faces from regions containing multiple faces. For the recognition of the face, we have chosen to use the ‘EGBM’ (Elastic Bunch Graph Matching) algorithm. For identifying faces, this system uses single images out of a database having one image per person. The task is complex because of variation in terms of position, size, expression, and pose. The system decreases this variance by extracting face descriptions in the form of image graphs. In this, the node points (chosen as eyes, nose, lips and chin) are described by sets of wavelet components (called ‘jets’). Image graph extraction is based on an approach called the ‘bunch graph’, which is constructed from a set of sample image graphs. Recognition is based on a directly comparing these graphs. The advantage of this method is in its tolerance to lighting conditions and requirement of less number of images per person in the database for comparison

    Passive Techniques for Detecting and Locating Manipulations in Digital Images

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, leída el 19-11-2020El numero de camaras digitales integradas en dispositivos moviles as como su uso en la vida cotidiana esta en continuo crecimiento. Diariamente gran cantidad de imagenes digitales, generadas o no por este tipo de dispositivos, circulan en Internet o son utilizadas como evidencias o pruebas en procesos judiciales. Como consecuencia, el analisis forense de imagenes digitales cobra importancia en multitud de situaciones de la vida real. El analisis forense de imagenes digitales se divide en dos grandes ramas: autenticidad de imagenes digitales e identificacion de la fuente de adquisicion de una imagen. La primera trata de discernir si una imagen ha sufrido algun procesamiento posterior al de su creacion, es decir, que no haya sido manipulada. La segunda pretende identificar el dispositivo que genero la imagen digital. La verificacion de la autenticidad de imagenes digitales se puedellevar a cabo mediante tecnicas activas y tecnicas pasivas de analisis forense. Las tecnicas activas se fundamentan en que las imagenes digitales cuentan con \marcas" presentes desde su creacion, de forma que cualquier tipo de alteracion que se realice con posterioridad a su generacion, modificara las mismas, y, por tanto, permitiran detectar si ha existido un posible post-proceso o manipulacion...The number of digital cameras integrated into mobile devices as well as their use in everyday life is continuously growing. Every day a large number of digital images, whether generated by this type of device or not, circulate on the Internet or are used as evidence in legal proceedings. Consequently, the forensic analysis of digital images becomes important in many real-life situations. Forensic analysis of digital images is divided into two main branches: authenticity of digital images and identi cation of the source of acquisition of an image. The first attempts to discern whether an image has undergone any processing subsequent to its creation, i.e. that it has not been manipulated. The second aims to identify the device that generated the digital image. Verification of the authenticity of digital images can be carried out using both active and passive forensic analysis techniques. The active techniques are based on the fact that the digital images have "marks"present since their creation so that any type of alteration made after their generation will modify them, and therefore will allow detection if there has been any possible post-processing or manipulation. On the other hand, passive techniques perform the analysis of authenticity by extracting characteristics from the image...Fac. de InformáticaTRUEunpu

    DEWA: A Multiaspect Approach for Multiple Face Detection in Complex Scene Digital Image

    Get PDF
    A new approach for detecting faces in a digital image with unconstrained background has been developed. The approach is composed of three phases: segmentation phase, filtering phase and localization phase. In the segmentation phase, we utilized both training and non-training methods, which are implemented in user selectable color space. In the filtering phase, Minkowski addition-based objects removal has been used for image cleaning. In the last phase, an image processing method and a data mining method are employed for grouping and localizing objects, combined with geometric-based image analysis. Several experiments have been conducted using our special face database that consists of simple objects and complex objects. The experiment results demonstrated that the detection accuracy is around 90% and the detection speed is less than 1 second in average

    Image enhancement for underwater mining applications

    Get PDF
    The exploration of water bodies from the sea to land filled water spaces has seen a continuous increase with new technologies such as robotics. Underwater images is one of the main sensor resources used but suffer from added problems due to the environment. Multiple methods and techniques have provided a way to correct the color, clear the poor quality and enhance the features. In this thesis work, we present the work of an Image Cleaning and Enhancement Technique which is based on performing color correction on images incorporated with Dark Channel Prior (DCP) and then taking the converted images and modifying them into the Long, Medium and Short (LMS) color space, as this space is the region in which the human eye perceives colour. This work is being developed at LSA (Laboratório de Sistema Autónomos) robotics and autonomous systems laboratory. Our objective is to improve the quality of images for and taken by robots with the particular emphasis on underwater flooded mines. This thesis work describes the architecture and the developed solution. A comparative analysis with state of the art methods and of our proposed solution is presented. Results from missions taken by the robot in operational mine scenarios are presented and discussed and allowing for the solution characterization and validation

    Video Quality Metrics

    Get PDF

    Advancements in multi-view processing for reconstruction, registration and visualization.

    Get PDF
    The ever-increasing diffusion of digital cameras and the advancements in computer vision, image processing and storage capabilities have lead, in the latest years, to the wide diffusion of digital image collections. A set of digital images is usually referred as a multi-view images set when the pictures cover different views of the same physical object or location. In multi-view datasets, correlations between images are exploited in many different ways to increase our capability to gather enhanced understanding and information on a scene. For example, a collection can be enhanced leveraging on the camera position and orientation, or with information about the 3D structure of the scene. The range of applications of multi-view data is really wide, encompassing diverse fields such as image-based reconstruction, image-based localization, navigation of virtual environments, collective photographic retouching, computational photography, object recognition, etc. For all these reasons, the development of new algorithms to effectively create, process, and visualize this type of data is an active research trend. The thesis will present four different advancements related to different aspects of the multi-view data processing: - Image-based 3D reconstruction: we present a pre-processing algorithm, that is a special color-to-gray conversion. This was developed with the aim to improve the accuracy of image-based reconstruction algorithms. In particular, we show how different dense stereo matching results can be enhanced by application of a domain separation approach that pre-computes a single optimized numerical value for each image location. - Image-based appearance reconstruction: we present a multi-view processing algorithm, this can enhance the quality of the color transfer from multi-view images to a geo-referenced 3D model of a location of interest. The proposed approach computes virtual shadows and allows to automatically segment shadowed regions from the input images preventing to use those pixels in subsequent texture synthesis. - 2D to 3D registration: we present an unsupervised localization and registration system. This system can recognize a site that has been framed in a multi-view data and calibrate it on a pre-existing 3D representation. The system has a very high accuracy and it can validate the result in a completely unsupervised manner. The system accuracy is enough to seamlessly view input images correctly super-imposed on the 3D location of interest. - Visualization: we present PhotoCloud, a real-time client-server system for interactive exploration of high resolution 3D models and up to several thousand photographs aligned over this 3D data. PhotoCloud supports any 3D models that can be rendered in a depth-coherent way and arbitrary multi-view image collections. Moreover, it tolerates 2D-to-2D and 2D-to-3D misalignments, and it provides scalable visualization of generic integrated 2D and 3D datasets by exploiting data duality. A set of effective 3D navigation controls, tightly integrated with innovative thumbnail bars, enhances the user navigation. These advancements have been developed in tourism and cultural heritage application contexts, but they are not limited to these
    corecore