6 research outputs found

    Sur la Restauration et l'Edition de Vidéo : Détection de Rayures et Inpainting de Scènes Complexes

    Get PDF
    The inevitable degradation of visual content such as images and films leads to the goal ofimage and video restoration. In this thesis, we look at two specific restoration problems : the detection ofline scratches in old films and the automatic completion of videos, or video inpainting as it is also known.Line scratches are caused when the film physically rubs against a mechanical part. This origin resultsin the specific characteristics of the defect, such as verticality and temporal persistence. We propose adetection algorithm based on the statistical approach known as a contrario methods. We also proposea temporal filtering step to remove false alarms present in the first detection step. Comparisons withprevious work show improved recall and precision, and robustness with respect to the presence of noiseand clutter in the film.The second part of the thesis concerns video inpainting. We propose an algorithm based on theminimisation of a patch-based functional of the video content. In this framework, we address the followingproblems : extremely high execution times, the correct handling of textures in the video and inpaintingwith moving cameras. We also address some convergence issues in a very simplified inpainting context.La degradation inévitable des contenus visuels (images, films) conduit nécessairementà la tâche de la restauration des images et des vidéos. Dans cetre thèse, nous nous intéresserons àdeux sous-problèmes de restauration : la détection des rayures dans les vieux films, et le remplissageautomatique des vidéos (“inpainting vidéo en anglais).En général, les rayures sont dues aux frottements de la pellicule du film avec un objet lors de laprojection du film. Les origines physiques de ce défaut lui donnent des caractéristiques très particuliers.Les rayures sont des lignes plus ou moins verticales qui peuvent être blanches ou noires (ou parfois encouleur) et qui sont temporellement persistantes, c’est-à-dire qu’elles ont une position qui est continuedans le temps. Afin de détecter ces défauts, nous proposons d’abord un algorithme de détection basésur un ensemble d’approches statistiques appelées les méthodes a contrario. Cet algorithme fournitune détection précise et robuste aux bruits et aux textures présentes dans l’image. Nous proposonségalement une étape de filtrage temporel afin d’écarter les fausses alarmes de la première étape dedétection. Celle-ci améliore la précision de l’algorithme en analysant le mouvement des détections spatiales.L’ensemble de l’algorithme (détection spatiale et filtrage temporel) est comparé à des approchesde la littérature et montre un rappel et une précision grandement améliorés.La deuxième partie de cette thèse est consacrée à l’inpainting vidéo. Le but ici est de remplirune région d’une vidéo avec un contenu qui semble visuellement cohérent et convaincant. Il existeune pléthore de méthodes qui traite ce problème dans le cas des images. La littérature dans le casdes vidéos est plus restreinte, notamment car le temps d’exécution représente un véritable obstacle.Nous proposons un algorithme d’inpainting vidéo qui vise l’optimisation d’une fonctionnelle d’énergiequi intègre la notion de patchs, c’est-à-dire des petits cubes de contenu vidéo. Nous traitons d’abord leprobl’‘eme du temps d’exécution avant d’attaquer celui de l’inpainting satisfaisant des textures dans lesvidéos. Nous traitons également le cas des vidéos dont le fond est en mouvement ou qui ont été prisesavec des caméras en mouvement. Enfin, nous nous intéressons à certaines questions de convergencede l’algorithme dans des cas très simplifiés

    Industrial Robot Collision Handling in Harsh Environments

    Get PDF
    The focus in this thesis is on robot collision handling systems, mainly collision detection and collision avoidance for industrial robots operating in harsh environments (e.g. potentially explosive atmospheres found in the oil and gas sector). Collision detection should prevent the robot from colliding and therefore avoid a potential accident. Collision avoidance builds on the concept of collision detection and aims at enabling the robot to find a collision free path circumventing the obstacle and leading to the goal position. The work has been done in collaboration with ABB Process Automation Division with focus on applications in oil and gas. One of the challenges in this work has been to contribute to safer use of industrial robots in potentially explosive environments. One of the main ideas is that a robot should be able to work together with a human as a robotic co-worker on for instance an oil rig. The robot should then perform heavy lifting and precision tasks, while the operator controls the steps of the operation through typically a hand-held interface. In such situations, when the human works alongside with the robot in potentially explosive environments, it is important that the robot has a way of handling collisions. The work in this thesis presents solutions for collision detection in paper A, B and C, thereafter solutions for collision avoidance are presented in paper D and E. Paper A approaches the problem of collision avoidance comparing an expert system and a hidden markov model (HMM) approach. An industrial robot equipped with a laser scanner is used to gather environment data on arbitrary set of points in the work cell. The two methods are used to detect obstacles within the work cell and shows a different set of strengths. The expert system shows an advantage in algorithm performance and the HMM method shows its strength in its ease of learning models of the environment. Paper B builds upon Paper A by incorporating a CAD model of the environment. The CAD model allows for a very fast setup of the expert system where no manual map creation is needed. The HMM can be trained based on the CAD model, which addresses the previous dependency on real sensor data for training purposes. Paper C compares two different world-model representation techniques, namely octrees and point clouds using both a graphics processing unit (GPU) and a central processing unit (CPU). The GPU showed its strength for uncompressed point clouds and high resolution point cloud models. However, if the resolution gets low enough, the CPU starts to outperform the GPU. This shows that parallel problems containing large data sets are suitable for GPU processing, but smaller parallel problems are still handled better by the CPU. In paper D, real-time collision avoidance is studied for a lightweight industrial robot using a development platform controller. A Microsoft Kinect sensor is used for capturing 3D depth data of the environment. The environment data is used together with an artificial potential fields method for generating virtual forces used for obstacle avoidance. The forces are projected onto the end-effector, preventing collision with the environment while moving towards the goal. Forces are also projected on to the elbow of the 7-Degree of freedom robot, which allows for nullspace movement. The algorithms for manipulating the sensor data and calculating virtual forces were developed for the GPU, this resulted in fast algorithms and is the enabling factor for real-time collision avoidance. Finally, paper E builds on the work in paper D by providing a framework for using the algorithms on a standard industrial controller and robot with minimal modifications. Further, algorithms were specifically developed for the robot controller to handle reactive movement. In addition, a full collision avoidance system for an end-user application which is very simple to implement is presented. The work described in this thesis presents solutions for collision detection and collision avoidance for safer use of robots. The work is also a step towards making businesses more competitive by enabling easy integration of collision handling for industrial robots

    Novel Video Completion Approaches and Their Applications

    Get PDF
    Video completion refers to automatically restoring damaged or removed objects in a video sequence, with applications ranging from sophisticated video removal of undesired static or dynamic objects to correction of missing or corrupted video frames in old movies and synthesis of new video frames to add, modify, or generate a new visual story. The video completion problem can be solved using texture synthesis and/or data interpolation to fill-in the holes of the sequence inward. This thesis makes a distinction between still image completion and video completion. The latter requires visually pleasing consistency by taking into account the temporal information. Based on their applied concepts, video completion techniques are categorized as inpainting and texture synthesis. We present a bandlet transform-based technique for each of these categories of video completion techniques. The proposed inpainting-based technique is a 3D volume regularization scheme that takes advantage of bandlet bases for exploiting the anisotropic regularities to reconstruct a damaged video. The proposed exemplar-based approach, on the other hand, performs video completion using a precise patch fusion in the bandlet domain instead of patch replacement. The video completion task is extended to two important applications in video restoration. First, we develop an automatic video text detection and removal that benefits from the proposed inpainting scheme and a novel video text detector. Second, we propose a novel video super-resolution technique that employs the inpainting algorithm spatially in conjunction with an effective structure tensor, generated using bandlet geometry. The experimental results show a good performance of the proposed video inpainting method and demonstrate the effectiveness of bandlets in video completion tasks. The proposed video text detector and the video super resolution scheme also show a high performance in comparison with existing methods

    Multiple View Geometry For Video Analysis And Post-production

    Get PDF
    Multiple view geometry is the foundation of an important class of computer vision techniques for simultaneous recovery of camera motion and scene structure from a set of images. There are numerous important applications in this area. Examples include video post-production, scene reconstruction, registration, surveillance, tracking, and segmentation. In video post-production, which is the topic being addressed in this dissertation, computer analysis of the motion of the camera can replace the currently used manual methods for correctly aligning an artificially inserted object in a scene. However, existing single view methods typically require multiple vanishing points, and therefore would fail when only one vanishing point is available. In addition, current multiple view techniques, making use of either epipolar geometry or trifocal tensor, do not exploit fully the properties of constant or known camera motion. Finally, there does not exist a general solution to the problem of synchronization of N video sequences of distinct general scenes captured by cameras undergoing similar ego-motions, which is the necessary step for video post-production among different input videos. This dissertation proposes several advancements that overcome these limitations. These advancements are used to develop an efficient framework for video analysis and post-production in multiple cameras. In the first part of the dissertation, the novel inter-image constraints are introduced that are particularly useful for scenes where minimal information is available. This result extends the current state-of-the-art in single view geometry techniques to situations where only one vanishing point is available. The property of constant or known camera motion is also described in this dissertation for applications such as calibration of a network of cameras in video surveillance systems, and Euclidean reconstruction from turn-table image sequences in the presence of zoom and focus. We then propose a new framework for the estimation and alignment of camera motions, including both simple (panning, tracking and zooming) and complex (e.g. hand-held) camera motions. Accuracy of these results is demonstrated by applying our approach to video post-production applications such as video cut-and-paste and shadow synthesis. As realistic image-based rendering problems, these applications require extreme accuracy in the estimation of camera geometry, the position and the orientation of the light source, and the photometric properties of the resulting cast shadows. In each case, the theoretical results are fully supported and illustrated by both numerical simulations and thorough experimentation on real data
    corecore