17,644 research outputs found

    Edge versus contrast estimation of morphological filters

    Full text link

    Unsupervised morphological segmentation for images

    Get PDF
    This paper deals with a morphological approach to unsupervised image segmentation. The proposed technique relies on a multiscale Top-Down approach allowing a hierarchical processing of the data ranging from the most global scale to the most detailed one. At each scale, the algorithm consists of four steps: image simplification, feature extraction, contour localization and quality estimation. The main emphasis of this paper is to discuss the selection of a simplification filter for segmentation. Morphological filters based on reconstruction proved to be very efficient for this purpose. The resulting unsupervised algorithm is very robust and can deal with very different type of images.Peer ReviewedPostprint (published version

    Hierarchical morphological segmentation for image sequence coding

    Get PDF
    This paper deals with a hierarchical morphological segmentation algorithm for image sequence coding. Mathematical morphology is very attractive for this purpose because it efficiently deals with geometrical features such as size, shape, contrast, or connectivity that can be considered as segmentation-oriented features. The algorithm follows a top-down procedure. It first takes into account the global information and produces a coarse segmentation, that is, with a small number of regions. Then, the segmentation quality is improved by introducing regions corresponding to more local information. The algorithm, considering sequences as being functions on a 3-D space, directly segments 3-D regions. A 3-D approach is used to get a segmentation that is stable in time and to directly solve the region correspondence problem. Each segmentation stage relies on four basic steps: simplification, marker extraction, decision, and quality estimation. The simplification removes information from the sequence to make it easier to segment. Morphological filters based on partial reconstruction are proven to be very efficient for this purpose, especially in the case of sequences. The marker extraction identifies the presence of homogeneous 3-D regions. It is based on constrained flat region labeling and morphological contrast extraction. The goal of the decision is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a modified watershed algorithm. Finally, the quality estimation concentrates on the coding residue, all the information about the 3-D regions that have not been properly segmented and therefore coded. The procedure allows the introduction of the texture and contour coding schemes within the segmentation algorithm. The coding residue is transmitted to the next segmentation stage to improve the segmentation and coding quality. Finally, segmentation and coding examples are presented to show the validity and interest of the coding approach.Peer ReviewedPostprint (published version

    Morphology of the very inclined debris disk around HD 32297

    Get PDF
    Direct imaging of circumstellar disks at high angular resolution is mandatory to provide morphological information that bring constraints on their properties, in particular the spatial distribution of dust. New techniques combining observing strategy and data processing now allow very high contrast imaging with 8-m class ground-based telescopes (10^-4 to 10^-5 at ~1") and complement space telescopes while improving angular resolution at near infrared wavelengths. We carried out a program at the VLT with NACO to image known debris disks with higher angular resolution in the near IR than ever before in order to study morphological properties and ultimately to detect signpost of planets. The observing method makes use of advanced techniques: Adaptive Optics, Coronagraphy and Differential Imaging, a combination designed to directly image exoplanets with the upcoming generation of "planet finders" like GPI (Gemini Planet Imager) and SPHERE (Spectro-Polarimetric High contrast Exoplanet REsearch). Applied to extended objects like circumstellar disks, the method is still successful but produces significant biases in terms of photometry and morphology. We developed a new model-matching procedure to correct for these biases and hence to bring constraints on the morphology of debris disks. From our program, we present new images of the disk around the star HD 32297 obtained in the H (1.6mic) and Ks (2.2mic) bands with an unprecedented angular resolution (~65 mas). The images show an inclined thin disk detected at separations larger than 0.5-0.6". The modeling stage confirms a very high inclination (i=88{\deg}) and the presence of an inner cavity inside r_0~110AU. We also found that the spine (line of maximum intensity along the midplane) of the disk is curved and we attributed this feature to a large anisotropic scattering factor (g~0.5, valid for an non-edge on disk). Abridged ...Comment: 12 pages, 10 figures, accepted for publication in Astronomy and Astrophysic

    Detection of dirt impairments from archived film sequences : survey and evaluations

    Get PDF
    Film dirt is the most commonly encountered artifact in archive restoration applications. Since dirt usually appears as a temporally impulsive event, motion-compensated interframe processing is widely applied for its detection. However, motion-compensated prediction requires a high degree of complexity and can be unreliable when motion estimation fails. Consequently, many techniques using spatial or spatiotemporal filtering without motion were also been proposed as alternatives. A comprehensive survey and evaluation of existing methods is presented, in which both qualitative and quantitative performances are compared in terms of accuracy, robustness, and complexity. After analyzing these algorithms and identifying their limitations, we conclude with guidance in choosing from these algorithms and promising directions for future research

    Accurate and reliable segmentation of the optic disc in digital fundus images

    Get PDF
    We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE)

    Object Classification in Astronomical Multi-Color Surveys

    Get PDF
    We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of >65000 color templates. The method aims for extracting the information content of object colors in a statistically correct way and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach. For the redshift estimation, we use an advanced version of the MEV estimator which determines the redshift error from the redshift dependent probability density function. The method was originally developed for the CADIS survey, where we checked its performance by spectroscopy. The method provides high reliability (6 errors among 151 objects with R<24), especially for quasar selection, and redshifts accurate within sigma ~ 0.03 for galaxies and sigma ~ 0.1 for quasars. We compare a few model surveys using the same telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. In practice, medium-band surveys show superior performance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, and is most critical for surveys with few, broad and deeply exposed filters, but less severe for many, narrow and less deep filters.Comment: 21 pages including 10 figures. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore