14,718 research outputs found

    Counting edge-injective homomorphisms and matchings on restricted graph classes

    Get PDF
    We consider the #W[1]\#\mathsf{W}[1]-hard problem of counting all matchings with exactly kk edges in a given input graph GG; we prove that it remains #W[1]\#\mathsf{W}[1]-hard on graphs GG that are line graphs or bipartite graphs with degree 22 on one side. In our proofs, we use that kk-matchings in line graphs can be equivalently viewed as edge-injective homomorphisms from the disjoint union of kk length-22 paths into (arbitrary) host graphs. Here, a homomorphism from HH to GG is edge-injective if it maps any two distinct edges of HH to distinct edges in GG. We show that edge-injective homomorphisms from a pattern graph HH can be counted in polynomial time if HH has bounded vertex-cover number after removing isolated edges. For hereditary classes H\mathcal{H} of pattern graphs, we complement this result: If the graphs in H\mathcal{H} have unbounded vertex-cover number even after deleting isolated edges, then counting edge-injective homomorphisms with patterns from H\mathcal{H} is #W[1]\#\mathsf{W}[1]-hard. Our proofs rely on an edge-colored variant of Holant problems and a delicate interpolation argument; both may be of independent interest.Comment: 35 pages, 9 figure

    Applications of entropy to extremal problems

    Get PDF
    The Sidorenko conjecture gives a lower bound on the number of homomorphisms from a bipartite graph to another graph. Szegedy [28] used entropy methods to prove the conjecture in some cases. We will refine these methods to also give lower bounds for the number of injective homomorphisms from a bipartite graph to another bipartite graph, and a lower bound for the number of homomorphisms from a k-partite hypergraph to another k-partite hypergraph, as well as a few other similar problems. Next is a generalisation of the Kruskal Katona Theorem [19, 17]. We are given integers k 4 we will make a lot of progress towards finding a solution. The next chapter is to do with Turán-type problems. Given a family of k-hypergraphs F, ex(n;F) is the maximum number of edges an F-free n-vertex k-hypergraph can have. We prove that for a rational r, there exists some finite family F of k-hypergraphs for which ex(n;F) = Ɵ(nk-r) if and only if 0 < r < k - 1 or r = k. The final chapter will deal with the implicit representation conjecture, in the special case of semi-algebraic graphs. Given a graph in such a family, we want to assign a name to each vertex in such a way that we can recover each edge based only on the names of the two incident vertices. We will first prove that one `obvious' way of storing the information doesn't work. Then we will come up with a way of storing the information that requires O(n1-E) bits per vertex, where E is some small constant depending only on the family

    Two Approaches to Sidorenko's Conjecture

    Full text link
    Sidorenko's conjecture states that for every bipartite graph HH on {1,,k}\{1,\cdots,k\}, (i,j)E(H)h(xi,yj)dμV(H)(h(x,y)dμ2)E(H)\int \prod_{(i,j)\in E(H)} h(x_i, y_j) d\mu^{|V(H)|} \ge \left( \int h(x,y) \,d\mu^2 \right)^{|E(H)|} holds, where μ\mu is the Lebesgue measure on [0,1][0,1] and hh is a bounded, non-negative, symmetric, measurable function on [0,1]2[0,1]^2. An equivalent discrete form of the conjecture is that the number of homomorphisms from a bipartite graph HH to a graph GG is asymptotically at least the expected number of homomorphisms from HH to the Erd\H{o}s-R\'{e}nyi random graph with the same expected edge density as GG. In this paper, we present two approaches to the conjecture. First, we introduce the notion of tree-arrangeability, where a bipartite graph HH with bipartition ABA \cup B is tree-arrangeable if neighborhoods of vertices in AA have a certain tree-like structure. We show that Sidorenko's conjecture holds for all tree-arrangeable bipartite graphs. In particular, this implies that Sidorenko's conjecture holds if there are two vertices a1,a2a_1, a_2 in AA such that each vertex aAa \in A satisfies N(a)N(a1)N(a) \subseteq N(a_1) or N(a)N(a2)N(a) \subseteq N(a_2), and also implies a recent result of Conlon, Fox, and Sudakov \cite{CoFoSu}. Second, if TT is a tree and HH is a bipartite graph satisfying Sidorenko's conjecture, then it is shown that the Cartesian product THT \Box H of TT and HH also satisfies Sidorenko's conjecture. This result implies that, for all d2d \ge 2, the dd-dimensional grid with arbitrary side lengths satisfies Sidorenko's conjecture.Comment: 20 pages, 2 figure

    Multicolor and directed edit distance

    Full text link
    The editing of a combinatorial object is the alteration of some of its elements such that the resulting object satisfies a certain fixed property. The edit problem for graphs, when the edges are added or deleted, was first studied independently by the authors and K\'ezdy [J. Graph Theory (2008), 58(2), 123--138] and by Alon and Stav [Random Structures Algorithms (2008), 33(1), 87--104]. In this paper, a generalization of graph editing is considered for multicolorings of the complete graph as well as for directed graphs. Specifically, the number of edge-recolorings sufficient to be performed on any edge-colored complete graph to satisfy a given hereditary property is investigated. The theory for computing the edit distance is extended using random structures and so-called types or colored homomorphisms of graphs.Comment: 25 page

    Homomorphisms are a good basis for counting small subgraphs

    Get PDF
    We introduce graph motif parameters, a class of graph parameters that depend only on the frequencies of constant-size induced subgraphs. Classical works by Lov\'asz show that many interesting quantities have this form, including, for fixed graphs HH, the number of HH-copies (induced or not) in an input graph GG, and the number of homomorphisms from HH to GG. Using the framework of graph motif parameters, we obtain faster algorithms for counting subgraph copies of fixed graphs HH in host graphs GG: For graphs HH on kk edges, we show how to count subgraph copies of HH in time kO(k)n0.174k+o(k)k^{O(k)}\cdot n^{0.174k + o(k)} by a surprisingly simple algorithm. This improves upon previously known running times, such as O(n0.91k+c)O(n^{0.91k + c}) time for kk-edge matchings or O(n0.46k+c)O(n^{0.46k + c}) time for kk-cycles. Furthermore, we prove a general complexity dichotomy for evaluating graph motif parameters: Given a class C\mathcal C of such parameters, we consider the problem of evaluating fCf\in \mathcal C on input graphs GG, parameterized by the number of induced subgraphs that ff depends upon. For every recursively enumerable class C\mathcal C, we prove the above problem to be either FPT or #W[1]-hard, with an explicit dichotomy criterion. This allows us to recover known dichotomies for counting subgraphs, induced subgraphs, and homomorphisms in a uniform and simplified way, together with improved lower bounds. Finally, we extend graph motif parameters to colored subgraphs and prove a complexity trichotomy: For vertex-colored graphs HH and GG, where HH is from a fixed class H\mathcal H, we want to count color-preserving HH-copies in GG. We show that this problem is either polynomial-time solvable or FPT or #W[1]-hard, and that the FPT cases indeed need FPT time under reasonable assumptions.Comment: An extended abstract of this paper appears at STOC 201
    corecore