142 research outputs found

    Edge enhanced spatio-temporal constrained reconstruction of undersampled dynamic contrast enhanced radial MRI

    Get PDF
    Journal ArticleThere are many applications in MRI where it is desirable to have high spatial and high temporal resolution. This can be achieved by undersampling of k-space and requires special techniques for reconstruction. Even if undersampling artifacts are removed, sharpness of the edges can be a problem. We propose a new technique that uses the gradient from a reference image to improve the quality of the edges in the reconstructed image along with a spatio-temporal constraint to reduce aliasing artifacts and noise. The reference is created from undersampled dynamic data by combining several adjacent frames. The method was tested on undersampled radial DCE MRI data with little respiratory motion. The proposed method was compared to reconstruction using the spatio-temporal constrained reconstruction. Sharper edges and an increase in the contrast was observed by using the proposed method

    Real-Time Magnetic Resonance Imaging

    Get PDF
    Real‐time magnetic resonance imaging (RT‐MRI) allows for imaging dynamic processes as they occur, without relying on any repetition or synchronization. This is made possible by modern MRI technology such as fast‐switching gradients and parallel imaging. It is compatible with many (but not all) MRI sequences, including spoiled gradient echo, balanced steady‐state free precession, and single‐shot rapid acquisition with relaxation enhancement. RT‐MRI has earned an important role in both diagnostic imaging and image guidance of invasive procedures. Its unique diagnostic value is prominent in areas of the body that undergo substantial and often irregular motion, such as the heart, gastrointestinal system, upper airway vocal tract, and joints. Its value in interventional procedure guidance is prominent for procedures that require multiple forms of soft‐tissue contrast, as well as flow information. In this review, we discuss the history of RT‐MRI, fundamental tradeoffs, enabling technology, established applications, and current trends
    corecore