203 research outputs found

    A Review and Performance Analysis of Image Edge Detection Algorithms

    Get PDF
    Edge detection is the fundamental operation of digital image processing and applied in many fields like industrial, medical, satellite, agriculture etc. According to this growth of edge detection applications, many researchers and scholars are interested to develop the edge detection algorithm by using various techniques. This paper illustrates the review for what are the novel techniques are used for the edge detection, which operators are mostly used by them and how they get the accurate results to compare with existing methods. It also discussing the performance analysis of most commonly used edge detection operators such as Canny, Laplacian Gaussian (LoG), Sobel, Prewitt and Roberts,. Finally the accuracy, PSNR (Peak Signal to Noise Ratio) and execution time are tabulated and realize the most precious and fast computed edge detection method is uncovered

    A Framework For Learning Scene Independent Edge Detection

    Get PDF
    In this work, a framework for a system which will intelligently assign an edge detection filter to an image based on features taken from the image is introduced. The framework has four parts: the learning stage, image feature extraction, training filter creation, and filter selection training. Two prototypes systems of this framework are given. The learning stage for these systems is the Berkeley Segmentation Database coupled with the Baddelay Delta Metric. Feature extraction is performed using a GIST methodology which extracts color, intensity, and orientation information. The set of image features are used as the input to a single hidden layer feed forward neural network trained using back propagation. The system trains against a set of linear cellular automata filters which are determined to best solve the edge image according to the Baddelay Delta Metric. One system uses cellular automata augmented with a fuzzy rule. The systems are trained and tested against the images from the Berkeley Segmentation Database. The results from the testing indicate that systems built on this framework can perform better than standard methods of edge detection on average across many types of images

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    State of the Art on Artificial Intelligence in Land Use Simulation

    Get PDF
    [Abstract] This review presents a state of the art in artificial intelligence applied to urban planning and particularly to land-use predictions. In this review, different articles after the year 2016 are analyzed mostly focusing on those that are not mentioned in earlier publications. Most of the articles analyzed used a combination of Markov chains and cellular automata to predict the growth of urban areas and metropolitan regions. We noticed that most of these simulations were applied in various areas of China. An analysis of the publication of articles in the area over time is included.This project was supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia (ref. ED431G/01 and ED431D 2017/16), the Spanish Ministry of Economy and Competitiveness via funding of the unique installation BIOCAI (UNLC08-1E-002 and UNLC13-13-3503), and the European Regional Development Funds (FEDER). CITIC, as Research Center accredited by Galician University System, is funded by “Consellería de Cultura, Educación e Universidade from Xunta de Galicia,” supported in an 80% through ERDF Funds, ERDF Operational Programme Galicia 2014–2020, and the remaining 20% by “Secretaria Xeral de Universidades” (grant no. ED431G 2019/01)Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/16Xunta de Galicia; ED431G 2019/0

    A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning

    Full text link
    Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural network in which neurons are randomly connected. Once initialized, the connection strengths remain unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional inputs into a high-dimensional space. The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate adequate responses for various applications. RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations and biological devices. This yields greater flexibility and shorter computation time. Moreover, the neuronal responses triggered by the model's dynamics shed light on understanding brain mechanisms that also exploit similar dynamical processes. While the literature on RC is vast and fragmented, here we conduct a unified review of RC's recent developments from machine learning to physics, biology, and neuroscience. We first review the early RC models, and then survey the state-of-the-art models and their applications. We further introduce studies on modeling the brain's mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive neuroscience and evolution.Comment: 51 pages, 19 figures, IEEE Acces

    VGG19+CNN: Deep Learning-Based Lung Cancer Classification with Meta-Heuristic Feature Selection Methodology

    Get PDF
    Lung illnesses are lung-affecting illnesses that harm the respiratory mechanism. Lung cancer is one of the major causes of death in humans internationally. Advance diagnosis could optimise survivability amongst humans. This remains feasible to systematise or reinforce the radiologist for cancer prognosis. PET and CT scanned images can be used for lung cancer detection. On the whole, the CT scan exhibits importance on the whole and functions as a comprehensive operation in former cancer prognosis. Thus, to subdue specific faults in choosing the feature and optimise classification, this study employs a new revolutionary algorithm called the Accelerated Wrapper-based Binary Artificial Bee Colony algorithm (AWBABCA) for effectual feature selection and VGG19+CNN for classifying cancer phases. The morphological features will be extracted out of the pre-processed image; next, the feature or nodule related to the lung that possesses a significant impact on incurring cancer will be chosen, and for this intention, herein AWBABCA has been employed. The chosen features will be utilised for cancer classification, facilitating a great level of strength and precision. Using the lung dataset to do an experimental evaluation shows that the proposed classifier got the best accuracy, precision, recall, and f1-score

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality
    • 

    corecore