1,228 research outputs found

    Virtual Runtime Application Partitions for Resource Management in Massively Parallel Architectures

    Get PDF
    This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.Siirretty Doriast

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal

    SpOctA: A 3D Sparse Convolution Accelerator with Octree-Encoding-Based Map Search and Inherent Sparsity-Aware Processing

    Full text link
    Point-cloud-based 3D perception has attracted great attention in various applications including robotics, autonomous driving and AR/VR. In particular, the 3D sparse convolution (SpConv) network has emerged as one of the most popular backbones due to its excellent performance. However, it poses severe challenges to real-time perception on general-purpose platforms, such as lengthy map search latency, high computation cost, and enormous memory footprint. In this paper, we propose SpOctA, a SpConv accelerator that enables high-speed and energy-efficient point cloud processing. SpOctA parallelizes the map search by utilizing algorithm-architecture co-optimization based on octree encoding, thereby achieving 8.8-21.2x search speedup. It also attenuates the heavy computational workload by exploiting inherent sparsity of each voxel, which eliminates computation redundancy and saves 44.4-79.1% processing latency. To optimize on-chip memory management, a SpConv-oriented non-uniform caching strategy is introduced to reduce external memory access energy by 57.6% on average. Implemented on a 40nm technology and extensively evaluated on representative benchmarks, SpOctA rivals the state-of-the-art SpConv accelerators by 1.1-6.9x speedup with 1.5-3.1x energy efficiency improvement.Comment: Accepted to ICCAD 202

    OpenACC Based GPU Parallelization of Plane Sweep Algorithm for Geometric Intersection

    Get PDF
    Line segment intersection is one of the elementary operations in computational geometry. Complex problems in Geographic Information Systems (GIS) like finding map overlays or spatial joins using polygonal data require solving segment intersections. Plane sweep paradigm is used for finding geometric intersection in an efficient manner. However, it is difficult to parallelize due to its in-order processing of spatial events. We present a new fine-grained parallel algorithm for geometric intersection and its CPU and GPU implementation using OpenMP and OpenACC. To the best of our knowledge, this is the first work demonstrating an effective parallelization of plane sweep on GPUs. We chose compiler directive based approach for implementation because of its simplicity to parallelize sequential code. Using Nvidia Tesla P100 GPU, our implementation achieves around 40X speedup for line segment intersection problem on 40K and 80K data sets compared to sequential CGAL library

    VThreads: A novel VLIW chip multiprocessor with hardware-assisted PThreads

    Get PDF
    We discuss VThreads, a novel VLIW CMP with hardware-assisted shared-memory Thread support. VThreads supports Instruction Level Parallelism via static multiple-issue and Thread Level Parallelism via hardware-assisted POSIX Threads along with extensive customization. It allows the instantiation of tightlycoupled streaming accelerators and supports up to 7-address Multiple-Input, Multiple-Output instruction extensions. VThreads is designed in technology-independent Register-Transfer-Level VHDL and prototyped on 40 nm and 28 nm Field-Programmable gate arrays. It was evaluated against a PThreads-based multiprocessor based on the Sparc-V8 ISA. On a 65 nm ASIC implementation VThreads achieves up to x7.2 performance increase on synthetic benchmarks, x5 on a parallel Mandelbrot implementation, 66% better on a threaded JPEG implementation, 79% better on an edge-detection benchmark and ~13% improvement on DES compared to the Leon3MP CMP. In the range of 2 to 8 cores VThreads demonstrates a post-route (statistical) power reduction between 65% to 57% at an area increase of 1.2%-10% for 1-8 cores, compared to a similarly-configured Leon3MP CMP. This combination of micro-architectural features, scalability, extensibility, hardware support for low-latency PThreads, power efficiency and area make the processor an attractive proposition for low-power, deeply-embedded applications requiring minimum OS support
    corecore