418 research outputs found

    Detection of Motorcycles in Urban Traffic Using Video Analysis: A Review

    Get PDF
    Motorcycles are Vulnerable Road Users (VRU) and as such, in addition to bicycles and pedestrians, they are the traffic actors most affected by accidents in urban areas. Automatic video processing for urban surveillance cameras has the potential to effectively detect and track these road users. The present review focuses on algorithms used for detection and tracking of motorcycles, using the surveillance infrastructure provided by CCTV cameras. Given the importance of results achieved by Deep Learning theory in the field of computer vision, the use of such techniques for detection and tracking of motorcycles is also reviewed. The paper ends by describing the performance measures generally used, publicly available datasets (introducing the Urban Motorbike Dataset (UMD) with quantitative evaluation results for different detectors), discussing the challenges ahead and presenting a set of conclusions with proposed future work in this evolving area

    Weighted Bayesian Gaussian Mixture Model for Roadside LiDAR Object Detection

    Full text link
    Background modeling is widely used for intelligent surveillance systems to detect moving targets by subtracting the static background components. Most roadside LiDAR object detection methods filter out foreground points by comparing new data points to pre-trained background references based on descriptive statistics over many frames (e.g., voxel density, number of neighbors, maximum distance). However, these solutions are inefficient under heavy traffic, and parameter values are hard to transfer from one scenario to another. In early studies, the probabilistic background modeling methods widely used for the video-based system were considered unsuitable for roadside LiDAR surveillance systems due to the sparse and unstructured point cloud data. In this paper, the raw LiDAR data were transformed into a structured representation based on the elevation and azimuth value of each LiDAR point. With this high-order tensor representation, we break the barrier to allow efficient high-dimensional multivariate analysis for roadside LiDAR background modeling. The Bayesian Nonparametric (BNP) approach integrates the intensity value and 3D measurements to exploit the measurement data using 3D and intensity info entirely. The proposed method was compared against two state-of-the-art roadside LiDAR background models, computer vision benchmark, and deep learning baselines, evaluated at point, object, and path levels under heavy traffic and challenging weather. This multimodal Weighted Bayesian Gaussian Mixture Model (GMM) can handle dynamic backgrounds with noisy measurements and substantially enhances the infrastructure-based LiDAR object detection, whereby various 3D modeling for smart city applications could be created

    Vehicle make and model recognition for intelligent transportation monitoring and surveillance.

    Get PDF
    Vehicle Make and Model Recognition (VMMR) has evolved into a significant subject of study due to its importance in numerous Intelligent Transportation Systems (ITS), such as autonomous navigation, traffic analysis, traffic surveillance and security systems. A highly accurate and real-time VMMR system significantly reduces the overhead cost of resources otherwise required. The VMMR problem is a multi-class classification task with a peculiar set of issues and challenges like multiplicity, inter- and intra-make ambiguity among various vehicles makes and models, which need to be solved in an efficient and reliable manner to achieve a highly robust VMMR system. In this dissertation, facing the growing importance of make and model recognition of vehicles, we present a VMMR system that provides very high accuracy rates and is robust to several challenges. We demonstrate that the VMMR problem can be addressed by locating discriminative parts where the most significant appearance variations occur in each category, and learning expressive appearance descriptors. Given these insights, we consider two data driven frameworks: a Multiple-Instance Learning-based (MIL) system using hand-crafted features and an extended application of deep neural networks using MIL. Our approach requires only image level class labels, and the discriminative parts of each target class are selected in a fully unsupervised manner without any use of part annotations or segmentation masks, which may be costly to obtain. This advantage makes our system more intelligent, scalable, and applicable to other fine-grained recognition tasks. We constructed a dataset with 291,752 images representing 9,170 different vehicles to validate and evaluate our approach. Experimental results demonstrate that the localization of parts and distinguishing their discriminative powers for categorization improve the performance of fine-grained categorization. Extensive experiments conducted using our approaches yield superior results for images that were occluded, under low illumination, partial camera views, or even non-frontal views, available in our real-world VMMR dataset. The approaches presented herewith provide a highly accurate VMMR system for rea-ltime applications in realistic environments.\\ We also validate our system with a significant application of VMMR to ITS that involves automated vehicular surveillance. We show that our application can provide law inforcement agencies with efficient tools to search for a specific vehicle type, make, or model, and to track the path of a given vehicle using the position of multiple cameras

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Design of a Real-Time Method for Detection and Evaluation of Corrosion in Vehicles

    Get PDF
    Automobiles endure several challenges when operating on the road that can degrade their performance, functionality, appearance, and overall utility. Although, corrosion is very ancient, it is the most dangerous hazard to an automobile. Corrosion can be defined as natural interaction between the metal and its surrounding atmosphere which results in oxidation of metal. This leads to change in metal properties and can be severely dangerous. One of the easiest ways to recognize corrosion is by using visual inspection methods. Visual inspection results are highly dependent on the operator’s way of analyzing corrosion and operator’s experience. Thus, visual inspection method lack standardization and is susceptible to human errors. In this research, an automated digital method is proposed to detect the surface corrosion and estimate the damage caused. The new approach has been designed to work effectively irrespective of the illumination levels, image dis-orientation and variance in rust texture. The proposed method in proven to be 96% accurate. Furthermore, the proposed method is designed in the form of a noncommercial, cloud-oriented app which is efficient, fast, low-cost, low-maintenance and possesses global accessibility

    Movement Analytics: Current Status, Application to Manufacturing, and Future Prospects from an AI Perspective

    Full text link
    Data-driven decision making is becoming an integral part of manufacturing companies. Data is collected and commonly used to improve efficiency and produce high quality items for the customers. IoT-based and other forms of object tracking are an emerging tool for collecting movement data of objects/entities (e.g. human workers, moving vehicles, trolleys etc.) over space and time. Movement data can provide valuable insights like process bottlenecks, resource utilization, effective working time etc. that can be used for decision making and improving efficiency. Turning movement data into valuable information for industrial management and decision making requires analysis methods. We refer to this process as movement analytics. The purpose of this document is to review the current state of work for movement analytics both in manufacturing and more broadly. We survey relevant work from both a theoretical perspective and an application perspective. From the theoretical perspective, we put an emphasis on useful methods from two research areas: machine learning, and logic-based knowledge representation. We also review their combinations in view of movement analytics, and we discuss promising areas for future development and application. Furthermore, we touch on constraint optimization. From an application perspective, we review applications of these methods to movement analytics in a general sense and across various industries. We also describe currently available commercial off-the-shelf products for tracking in manufacturing, and we overview main concepts of digital twins and their applications

    Reprezentace znalostí v hlubokých neuronových sítích

    Get PDF
    Convolutional neural networks (CNNs) are known to outperform humans in numerous image classification and object detection tasks. They also excel at captioning, image segmentation, and feature extraction. CNNs are precise at recognition and generalize well, yet analyzing their decision-making process remains challenging. A means to study their internal knowledge representation provide the so-called heat maps and their variants like the saliency, SmoothGrad, and Grad-CAM maps. The techniques such as t-SNE, UMAP, and ivis can, on the other hand, help visualize the multi-dimensional features formed in different convolutional layers. Inspired by the results obtained when analyzing the capabilities of CNNs, we introduce two novel size-reduction algorithms: Iterative Top Cut and Iterative Feature Top Cut. Both algorithms successively remove the layers of a CNN starting from its top until a stopping criterion is activated. The stopping criteria involve the model's performance and the formed internal knowledge representation. In particular, the Iterative Top Cut method exceeds our expectations by shrinking some models, such as EfficientNetV2S, up to 3.15 times while preserving their accuracy on the Cars-196 dataset. Moreover, the algorithm generalizes well and proves to be stable. 1Při řešení mnohých úloh z oblasti klasifikace obrázků a detekce objektů překonávají konvoluční neuronové sítě (CNN sítě) lidské schopnosti. CNN sítě vynikají i při vytváření titulků, segmentaci obrázků a při extrakci příznaků. Modely CNN sítí jsou mimořádně přesné při rozpoznávání obrázků a extrahované znalosti dobře zobecňují, nicméně analýza jejich rozhodovacího procesu zůstává problematická. Vhodný prostředek k analýze interní reprezentace znalostí v CNN sítích představují takzvané "heat maps" (teplotní mapy) a jejich varianty, například typu "saliency maps" (charakteristické mapy), SmoothGrad a Grad-CAM. Techniky t-SNE, UMAP a ivis používané pro redukci dimenzionality pak podporují snadnou vizualizaci vícerozměrných příznaků vytvořených v jednotlivých kon- volučních vrstvách CNN sítí. Na základě výsledků získaných při vyhodnocování vlastností CNN modelů, jsme na- vrhli dva nové algoritmy pro prořezávání předučených CNN sítí: "Iterative Top Cut" a "Iterative Feature Top Cut". Oba algoritmy postupně odstraňují koncové vrstvy CNN sítí, dokud není aktivováno ukončovací kritérium algoritmu. Ukončovací kritéria berou v úvahu dosahovanou přesnost CNN sítě a kvalitu vytvořené interní reprezentace znalostí. Vynikajících výsledků dosahuje zejména metoda "Iterative Top Cut", která je schopná zredukovat velikost...Katedra teoretické informatiky a matematické logikyDepartment of Theoretical Computer Science and Mathematical LogicFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult
    corecore