8,740 research outputs found

    Edge-coloring via fixable subgraphs

    Full text link
    Many graph coloring proofs proceed by showing that a minimal counterexample to the theorem being proved cannot contain certain configurations, and then showing that each graph under consideration contains at least one such configuration; these configurations are called \emph{reducible} for that theorem. (A \emph{configuration} is a subgraph HH, along with specified degrees dG(v)d_G(v) in the original graph GG for each vertex of HH.) We give a general framework for showing that configurations are reducible for edge-coloring. A particular form of reducibility, called \emph{fixability}, can be considered without reference to a containing graph. This has two key benefits: (i) we can now formulate necessary conditions for fixability, and (ii) the problem of fixability is easy for a computer to solve. The necessary condition of \emph{superabundance} is sufficient for multistars and we conjecture that it is sufficient for trees as well, which would generalize the powerful technique of Tashkinov trees. Via computer, we can generate thousands of reducible configurations, but we have short proofs for only a small fraction of these. The computer can write \LaTeX\ code for its proofs, but they are only marginally enlightening and can run thousands of pages long. We give examples of how to use some of these reducible configurations to prove conjectures on edge-coloring for small maximum degree. Our aims in writing this paper are (i) to provide a common context for a variety of reducible configurations for edge-coloring and (ii) to spur development of methods for humans to understand what the computer already knows.Comment: 18 pages, 8 figures; 12-page appendix with 39 figure

    Graph coloring with no large monochromatic components

    Full text link
    For a graph G and an integer t we let mcc_t(G) be the smallest m such that there exists a coloring of the vertices of G by t colors with no monochromatic connected subgraph having more than m vertices. Let F be any nontrivial minor-closed family of graphs. We show that \mcc_2(G) = O(n^{2/3}) for any n-vertex graph G \in F. This bound is asymptotically optimal and it is attained for planar graphs. More generally, for every such F and every fixed t we show that mcc_t(G)=O(n^{2/(t+1)}). On the other hand we have examples of graphs G with no K_{t+3} minor and with mcc_t(G)=\Omega(n^{2/(2t-1)}). It is also interesting to consider graphs of bounded degrees. Haxell, Szabo, and Tardos proved \mcc_2(G) \leq 20000 for every graph G of maximum degree 5. We show that there are n-vertex 7-regular graphs G with \mcc_2(G)=\Omega(n), and more sharply, for every \epsilon>0 there exists c_\epsilon>0 and n-vertex graphs of maximum degree 7, average degree at most 6+\epsilon for all subgraphs, and with mcc_2(G)\ge c_\eps n. For 6-regular graphs it is known only that the maximum order of magnitude of \mcc_2 is between \sqrt n and n. We also offer a Ramsey-theoretic perspective of the quantity \mcc_t(G).Comment: 13 pages, 2 figure

    Two novel evolutionary formulations of the graph coloring problem

    Full text link
    We introduce two novel evolutionary formulations of the problem of coloring the nodes of a graph. The first formulation is based on the relationship that exists between a graph's chromatic number and its acyclic orientations. It views such orientations as individuals and evolves them with the aid of evolutionary operators that are very heavily based on the structure of the graph and its acyclic orientations. The second formulation, unlike the first one, does not tackle one graph at a time, but rather aims at evolving a `program' to color all graphs belonging to a class whose members all have the same number of nodes and other common attributes. The heuristics that result from these formulations have been tested on some of the Second DIMACS Implementation Challenge benchmark graphs, and have been found to be competitive when compared to the several other heuristics that have also been tested on those graphs.Comment: To appear in Journal of Combinatorial Optimizatio

    Extremal Optimization at the Phase Transition of the 3-Coloring Problem

    Full text link
    We investigate the phase transition of the 3-coloring problem on random graphs, using the extremal optimization heuristic. 3-coloring is among the hardest combinatorial optimization problems and is closely related to a 3-state anti-ferromagnetic Potts model. Like many other such optimization problems, it has been shown to exhibit a phase transition in its ground state behavior under variation of a system parameter: the graph's mean vertex degree. This phase transition is often associated with the instances of highest complexity. We use extremal optimization to measure the ground state cost and the ``backbone'', an order parameter related to ground state overlap, averaged over a large number of instances near the transition for random graphs of size nn up to 512. For graphs up to this size, benchmarks show that extremal optimization reaches ground states and explores a sufficient number of them to give the correct backbone value after about O(n3.5)O(n^{3.5}) update steps. Finite size scaling gives a critical mean degree value αc=4.703(28)\alpha_{\rm c}=4.703(28). Furthermore, the exploration of the degenerate ground states indicates that the backbone order parameter, measuring the constrainedness of the problem, exhibits a first-order phase transition.Comment: RevTex4, 8 pages, 4 postscript figures, related information available at http://www.physics.emory.edu/faculty/boettcher

    Random Graphs with Hidden Color

    Full text link
    We propose and investigate a unifying class of sparse random graph models, based on a hidden coloring of edge-vertex incidences, extending an existing approach, Random graphs with a given degree distribution, in a way that admits a nontrivial correlation structure in the resulting graphs. The approach unifies a number of existing random graph ensembles within a common general formalism, and allows for the analytic calculation of observable graph characteristics. In particular, generating function techniques are used to derive the size distribution of connected components (clusters) as well as the location of the percolation threshold where a giant component appears.Comment: 4 pages, no figures, RevTe

    The min-max edge q-coloring problem

    Full text link
    In this paper we introduce and study a new problem named \emph{min-max edge qq-coloring} which is motivated by applications in wireless mesh networks. The input of the problem consists of an undirected graph and an integer qq. The goal is to color the edges of the graph with as many colors as possible such that: (a) any vertex is incident to at most qq different colors, and (b) the maximum size of a color group (i.e. set of edges identically colored) is minimized. We show the following results: 1. Min-max edge qq-coloring is NP-hard, for any q≥2q \ge 2. 2. A polynomial time exact algorithm for min-max edge qq-coloring on trees. 3. Exact formulas of the optimal solution for cliques and almost tight bounds for bicliques and hypergraphs. 4. A non-trivial lower bound of the optimal solution with respect to the average degree of the graph. 5. An approximation algorithm for planar graphs.Comment: 16 pages, 5 figure

    Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs

    Full text link
    We consider the problem of coloring Erdos-Renyi and regular random graphs of finite connectivity using q colors. It has been studied so far using the cavity approach within the so-called one-step replica symmetry breaking (1RSB) ansatz. We derive a general criterion for the validity of this ansatz and, applying it to the ground state, we provide evidence that the 1RSB solution gives exact threshold values c_q for the q-COL/UNCOL phase transition. We also study the asymptotic thresholds for q >> 1 finding c_q = 2qlog(q)-log(q)-1+o(1) in perfect agreement with rigorous mathematical bounds, as well as the nature of excited states, and give a global phase diagram of the problem.Comment: 23 pages, 10 figures. Replaced with accepted versio
    • …
    corecore