2,395 research outputs found

    Edge clique graphs and some classes of chordal graphs

    Get PDF
    The edge clique graph of a graph G is one having as vertices the edges of G, two vertices being adjacent if the corresponding edges of G belong to a common clique. This class of graphs has been introduced by Albertson and Collins (1984). Although many interesting properties of it have been since studied, we do not know complete characterizations of edge clique graphs of any non trivial class of graphs. In this paper, we describe characterizations relative to edge clique graphs and some classes of chordal graphs, such as starlike, starlikethreshold, split and threshold graphs. In special, a known necessary condition for a graph to be an edge clique graph is that the sizes of all maximal cliques and intersections of ma.ximal cliques ought to be triangular numbers. We show that this condition is also suflicient for starlike-threshold graphs

    Degree-Constrained Orientation of Maximum Satisfaction: Graph Classes and Parameterized Complexity

    Get PDF
    The problem Max W-Light (Max W-Heavy) for an undirected graph is to assign a direction to each edge so that the number of vertices of outdegree at most W (resp. at least W) is maximized. It is known that these problems are NP-hard even for fixed W. For example, Max 0-Light is equivalent to the problem of finding a maximum independent set. In this paper, we show that for any fixed constant W, Max W-Heavy can be solved in linear time for hereditary graph classes for which treewidth is bounded by a function of degeneracy. We show that such graph classes include chordal graphs, circular-arc graphs, d-trapezoid graphs, chordal bipartite graphs, and graphs of bounded clique-width. To have a polynomial-time algorithm for Max W-Light, we need an additional condition of a polynomial upper bound on the number of potential maximal cliques to apply the metatheorem by Fomin, Todinca, and Villanger [SIAM J. Comput., 44(1):57-87, 2015]. The aforementioned graph classes, except bounded clique-width graphs, satisfy such a condition. For graphs of bounded clique-width, we present a dynamic programming approach not using the metatheorem to show that it is actually polynomial-time solvable for this graph class too. We also study the parameterized complexity of the problems and show some tractability and intractability results

    Constrained Representations of Map Graphs and Half-Squares

    Get PDF
    The square of a graph H, denoted H^2, is obtained from H by adding new edges between two distinct vertices whenever their distance in H is two. The half-squares of a bipartite graph B=(X,Y,E_B) are the subgraphs of B^2 induced by the color classes X and Y, B^2[X] and B^2[Y]. For a given graph G=(V,E_G), if G=B^2[V] for some bipartite graph B=(V,W,E_B), then B is a representation of G and W is the set of points in B. If in addition B is planar, then G is also called a map graph and B is a witness of G [Chen, Grigni, Papadimitriou. Map graphs. J. ACM49 (2) (2002) 127-138]. While Chen, Grigni, Papadimitriou proved that any map graph G=(V,E_G) has a witness with at most 3|V|-6 points, we show that, given a map graph G and an integer k, deciding if G admits a witness with at most k points is NP-complete. As a by-product, we obtain NP-completeness of edge clique partition on planar graphs; until this present paper, the complexity status of edge clique partition for planar graphs was previously unknown. We also consider half-squares of tree-convex bipartite graphs and prove the following complexity dichotomy: Given a graph G=(V,E_G) and an integer k, deciding if G=B^2[V] for some tree-convex bipartite graph B=(V,W,E_B) with |W|<=k points is NP-complete if G is non-chordal dually chordal and solvable in linear time otherwise. Our proof relies on a characterization of half-squares of tree-convex bipartite graphs, saying that these are precisely the chordal and dually chordal graphs

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    Hamiltonian chordal graphs are not cycle extendible

    Full text link
    In 1990, Hendry conjectured that every Hamiltonian chordal graph is cycle extendible; that is, the vertices of any non-Hamiltonian cycle are contained in a cycle of length one greater. We disprove this conjecture by constructing counterexamples on nn vertices for any n≥15n \geq 15. Furthermore, we show that there exist counterexamples where the ratio of the length of a non-extendible cycle to the total number of vertices can be made arbitrarily small. We then consider cycle extendibility in Hamiltonian chordal graphs where certain induced subgraphs are forbidden, notably PnP_n and the bull.Comment: Some results from Section 3 were incorrect and have been removed. To appear in SIAM Journal on Discrete Mathematic
    • …
    corecore