57,348 research outputs found

    Mixing patterns and community structure in networks

    Full text link
    Common experience suggests that many networks might possess community structure - division of vertices into groups, with a higher density of edges within groups than between them. Here we describe a new computer algorithm that detects structure of this kind. We apply the algorithm to a number of real-world networks and show that they do indeed possess non-trivial community structure. We suggest a possible explanation for this structure in the mechanism of assortative mixing, which is the preferential association of network vertices with others that are like them in some way. We show by simulation that this mechanism can indeed account for community structure. We also look in detail at one particular example of assortative mixing, namely mixing by vertex degree, in which vertices with similar degree prefer to be connected to one another. We propose a measure for mixing of this type which we apply to a variety of networks, and also discuss the implications for network structure and the formation of a giant component in assortatively mixed networks.Comment: 21 pages, 9 postscript figures, 2 table

    Hierarchical Change Point Detection on Dynamic Networks

    Full text link
    This paper studies change point detection on networks with community structures. It proposes a framework that can detect both local and global changes in networks efficiently. Importantly, it can clearly distinguish the two types of changes. The framework design is generic and as such several state-of-the-art change point detection algorithms can fit in this design. Experiments on both synthetic and real-world networks show that this framework can accurately detect changes while achieving up to 800X speedup.Comment: 9 pages, ACM WebSci'1

    Community Detection in Networks with Node Attributes

    Full text link
    Community detection algorithms are fundamental tools that allow us to uncover organizational principles in networks. When detecting communities, there are two possible sources of information one can use: the network structure, and the features and attributes of nodes. Even though communities form around nodes that have common edges and common attributes, typically, algorithms have only focused on one of these two data modalities: community detection algorithms traditionally focus only on the network structure, while clustering algorithms mostly consider only node attributes. In this paper, we develop Communities from Edge Structure and Node Attributes (CESNA), an accurate and scalable algorithm for detecting overlapping communities in networks with node attributes. CESNA statistically models the interaction between the network structure and the node attributes, which leads to more accurate community detection as well as improved robustness in the presence of noise in the network structure. CESNA has a linear runtime in the network size and is able to process networks an order of magnitude larger than comparable approaches. Last, CESNA also helps with the interpretation of detected communities by finding relevant node attributes for each community.Comment: Published in the proceedings of IEEE ICDM '1

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Community detection and role identification in directed networks: understanding the Twitter network of the care.data debate

    Get PDF
    With the rise of social media as an important channel for the debate and discussion of public affairs, online social networks such as Twitter have become important platforms for public information and engagement by policy makers. To communicate effectively through Twitter, policy makers need to understand how influence and interest propagate within its network of users. In this chapter we use graph-theoretic methods to analyse the Twitter debate surrounding NHS Englands controversial care.data scheme. Directionality is a crucial feature of the Twitter social graph - information flows from the followed to the followers - but is often ignored in social network analyses; our methods are based on the behaviour of dynamic processes on the network and can be applied naturally to directed networks. We uncover robust communities of users and show that these communities reflect how information flows through the Twitter network. We are also able to classify users by their differing roles in directing the flow of information through the network. Our methods and results will be useful to policy makers who would like to use Twitter effectively as a communication medium

    The use of multilayer network analysis in animal behaviour

    Get PDF
    Network analysis has driven key developments in research on animal behaviour by providing quantitative methods to study the social structures of animal groups and populations. A recent formalism, known as \emph{multilayer network analysis}, has advanced the study of multifaceted networked systems in many disciplines. It offers novel ways to study and quantify animal behaviour as connected 'layers' of interactions. In this article, we review common questions in animal behaviour that can be studied using a multilayer approach, and we link these questions to specific analyses. We outline the types of behavioural data and questions that may be suitable to study using multilayer network analysis. We detail several multilayer methods, which can provide new insights into questions about animal sociality at individual, group, population, and evolutionary levels of organisation. We give examples for how to implement multilayer methods to demonstrate how taking a multilayer approach can alter inferences about social structure and the positions of individuals within such a structure. Finally, we discuss caveats to undertaking multilayer network analysis in the study of animal social networks, and we call attention to methodological challenges for the application of these approaches. Our aim is to instigate the study of new questions about animal sociality using the new toolbox of multilayer network analysis.Comment: Thoroughly revised; title changed slightl
    • …
    corecore