14 research outputs found

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    Algebraic geometry for tensor networks, matrix multiplication, and flag matroids

    Get PDF
    This thesis is divided into two parts, each part exploring a different topic within the general area of nonlinear algebra. In the first part, we study several applications of tensors. First, we study tensor networks, and more specifically: uniform matrix product states. We use methods from nonlinear algebra and algebraic geometry to answer questions about topology, defining equations, and identifiability of uniform matrix product states. By an interplay of theorems from algebra, geometry, and quantum physics we answer several questions and conjectures posed by Critch, Morton and Hackbusch. In addition, we prove a tensor version of the so-called quantum Wielandt inequality, solving an open problem regarding the higher-dimensional version of matrix product states. Second, we present new contributions to the study of fast matrix multiplication. Motivated by the symmetric version of matrix multiplication we study the plethysm S^k(sl_n) of the adjoint representation sl_n of the Lie group SL_n . Moreover, we discuss two algebraic approaches for constructing new tensors which could potentially be used to prove new upper bounds on the complexity of matrix multiplication. One approach is based on the highest weight vectors of the aforementioned plethysm. The other approach uses smoothable finite-dimensional algebras. Finally, we study the Hessian discriminant of a cubic surface, a recently introduced invariant defined in terms of the Waring rank. We express the Hessian discriminant in terms of fundamental invariants. This answers Question 15 of the 27 questions on the cubic surface posed by Bernd Sturmfels. In the second part of this thesis, we apply algebro-geometric methods to study matroids and flag matroids. We review a geometric interpretation of the Tutte polynomial in terms of the equivariant K-theory of the Grassmannian. By generalizing Grassmannians to partial flag varieties, we obtain a new invariant of flag matroids: the flag-geometric Tutte polynomial. We study this invariant in detail, and prove several interesting combinatorial properties
    corecore