293 research outputs found

    A multiresolution framework for local similarity based image denoising

    Get PDF
    In this paper, we present a generic framework for denoising of images corrupted with additive white Gaussian noise based on the idea of regional similarity. The proposed framework employs a similarity function using the distance between pixels in a multidimensional feature space, whereby multiple feature maps describing various local regional characteristics can be utilized, giving higher weight to pixels having similar regional characteristics. An extension of the proposed framework into a multiresolution setting using wavelets and scale space is presented. It is shown that the resulting multiresolution multilateral (MRM) filtering algorithm not only eliminates the coarse-grain noise but can also faithfully reconstruct anisotropic features, particularly in the presence of high levels of noise

    An efficient adaptive fusion scheme for multifocus images in wavelet domain using statistical properties of neighborhood

    Get PDF
    In this paper we present a novel fusion rule which can efficiently fuse multifocus images in wavelet domain by taking weighted average of pixels. The weights are adaptively decided using the statistical properties of the neighborhood. The main idea is that the eigen value of unbiased estimate of the covariance matrix of an image block depends on the strength of edges in the block and thus makes a good choice for weight to be given to the pixel, giving more weightage to pixel with sharper neighborhood. The performance of the proposed method have been extensively tested on several pairs of multifocus images and also compared quantitatively with various existing methods with the help of well known parameters including Petrovic and Xydeas image fusion metric. Experimental results show that performance evaluation based on entropy, gradient, contrast or deviation, the criteria widely used for fusion analysis, may not be enough. This work demonstrates that in some cases, these evaluation criteria are not consistent with the ground truth. It also demonstrates that Petrovic and Xydeas image fusion metric is a more appropriate criterion, as it is in correlation with ground truth as well as visual quality in all the tested fused images. The proposed novel fusion rule significantly improves contrast information while preserving edge information. The major achievement of the work is that it significantly increases the quality of the fused image, both visually and in terms of quantitative parameters, especially sharpness with minimum fusion artifacts

    Combination of the Level-Set Methods with the Contourlet Transform for the Segmentation of the IVUS Images

    Get PDF
    Intravascular ultrasound (IVUS) imaging is a catheter-based medical methodology establishing itself as a useful modality for studying atherosclerosis. The detection of lumen and media-adventitia boundaries in IVUS images constitutes an essential step towards the reliable quantitative diagnosis of atherosclerosis. In this paper, a novel scheme is proposed to automatically detect lumen and media-adventitia borders. This segmentation method is based on the level-set model and the contourlet multiresolution analysis. The contourlet transform decomposes the original image into low-pass components and band-pass directional bands. The circular hough transform (CHT) is adopted in low-pass bands to yield the initial lumen and media-adventitia contours. The anisotropic diffusion filtering is then used in band-pass subbands to suppress noise and preserve arterial edges. Finally, the curve evolution in the level-set functions is used to obtain final contours. The proposed method is experimentally evaluated via 20 simulated images and 30 real images from human coronary arteries. It is demonstrated that the mean distance error and the relative mean distance error have increased by 5.30 pixels and 7.45%, respectively, as compared with those of a recently traditional level-set model. These results reveal that the proposed method can automatically and accurately extract two vascular boundaries
    corecore