36 research outputs found

    Developments and Applications of Synchrotron Radiation Computed Laminography with Micrometer and Nanometer resolution

    Get PDF
    The aim of this thesis is to enable and to improve computed laminography using synchrotron radiation. This has consisted of optimizing imaging setups, techniques and data treatment methods. Extending the techniques towards better resolution and new contrast modes has been the main driving factor. We have exploited a wide variety of imaging applications, ranging from biology and medical studies to in situ and ex situ studies of materials and microelectronic devices

    Geometrical Calibration and Filter Optimization for Cone-Beam Computed Tomography

    Get PDF
    This thesis will discuss the requirements of a software library for tomography and will derive a framework which can be used to realize various applications in cone-beam computed tomography (CBCT). The presented framework is self-contained and is realized using the MATLAB environment in combination with native low-level technologies (C/C++ and CUDA) to improve its computational performance, while providing accessibility and extendability through to use of a scripting language environment. On top of this framework, the realization of Katsevich’s algorithm on multicore hardware will be explained and the resulting implementation will be compared to the Feldkamp, Davis and Kress (FDK) algorithm. It will also be shown that this helical reconstruction method has the potential to reduce the measurement uncertainty. However, misalignment artifacts appear more severe in the helical reconstructions from real data than in the circular ones. Especially for helical CBCT (H-CBCT), this fact suggests that a precise calibration of the computed tomography (CT) system is inevitable. As a consequence, a self-calibration method will be designed that is able to estimate the misalignment parameters from the cone-beam projection data without the need of any additional measurements. The presented method employs a multi-resolution 2D-3D registration technique and a novel volume update scheme in combination with a stochastic reprojection strategy to achieve a reasonable runtime performance. The presented results will show that this method reaches sub-voxel accuracy and can compete with current state-of-the-art online- and offline-calibration approaches. Additionally, for the construction of filters in the area of limited-angle tomography a general scheme which uses the Approximate Inverse (AI) to compute an optimized set of 2D angle-dependent projection filters will be derived. Optimal sets of filters are then precomputed for two angular range setups and will be reused to perform various evaluations on multiple datasets with a filtered backprojection (FBP)-type method. This approach will be compared to the standard FDK algorithm and to the simultaneous iterative reconstruction technique (SIRT). The results of the study show that the introduced filter optimization produces results comparable to those of SIRT with respect to the reduction of reconstruction artifacts, whereby its runtime is comparable to that of the FDK algorithm

    3-D imaging based on hard x-ray grating interferometry: theory, development and application

    Get PDF
    This thesis focuses on the development and optimization of Talbot grating interferometry for phase contrast imaging of laterally extended samples with high speed. This development is established by a theoretical description of the forward problem of image formation and the inverse problem of data retrieval, supported by numerical calculations and confirmed in exemplary experiments. The potential of two new developed instruments is demonstrated by a wide variety of imaging applications

    Core Imaging Library - Part II:multichannel reconstruction for dynamic and spectral tomography

    Get PDF
    The newly developed core imaging library (CIL) is a flexible plug and play library for tomographic imaging with a specific focus on iterative reconstruction. CIL provides building blocks for tailored regularized reconstruction algorithms and explicitly supports multichannel tomographic data. In the first part of this two-part publication, we introduced the fundamentals of CIL. This paper focuses on applications of CIL for multichannel data, e.g. dynamic and spectral. We formalize different optimization problems for colour processing, dynamic and hyperspectral tomography and demonstrate CIL’s capabilities for designing state-of-the-art reconstruction methods through case studies and code snapshots

    The use of synchrotron x-ray micro computed tomography to study the failure mechanisms of thermal barrier coatings

    Get PDF
    Thermal barrier coatings (TBCs) are used to protect high-pressure stage 1 turbine components in aero engines. At present the full potential high-temperature capabilities of TBCs cannot be utilised due to the difficulties in estimating the remaining useful life of in-service TBCs. State of the art non-destructive techniques, such as photo-luminescent piezospectroscopy (PLPS) have aided in furthering the understanding of damage evolution mechanism techniques, but are limited in applicability at temperature. In this work, a new force-balance model is presented for calculating the growth stress in a thermally grown oxide (TGO) layer at oxidation temperatures. Furthermore, a new experimental technique is explored for observation of the full-field strain distribution using synchrotron X-ray microtomography (SX ÎĽCT) coupled with digital volume correlation (DVC). The forcebalance method relates the creep in bondcoats of precision-machined cylindrical micro-specimens to the stress acted on the bondcoat by the TGO. These precisionmachined specimens were volumetrically imaged at the I12 JEEP beamline of Diamond Light Source (DLS) to reveal the three-dimensional evolution of TBC microstructure with time at temperature. The time-dependent volumetric image data acquired at DLS were processed using commercial digital volume correlation code to compute full-field displacement and strain distribution

    Étude expérimentale et numérique des mécanismes d'endommagement ductile et rupture des bords découpés des aciers avancés pour l'automobile

    Get PDF
    The mechanical properties of automotive structures made of advanced high strength steels (AHSS) is often seen reduced by the presence of cut edges. Here this phenomenon is investigated for ferrite-bainite steel (FB600) and martensite ferrite steel (DP600), the latter having higher work hardening and phase hardness gradient than FB600.Damage micromechanisms for these two base materials were assessed using in situ synchrotron tomography, in situ SEM and SEM on cross sections. It was revealed for the DP600 steel that damage nucleated from particles and ferrite-martensite interfaces. In addition, needle shaped voids, that are consistent with the presence of segregation lines, were seen. For the FB steel, the same observations hold true except that the decohesion on interfaces sets in at higher strains. Quantitative image analysis also showed that the initial number of voids and the number of nucleating voids was higher for DP steel than for FB steel which was also seen to be more damage tolerant.Punched and machined edges made of DP600 and FB600 steel were mechanically loaded during in situ laminography testing. It was found that the fracture zone of the punched edge was rough and that needle-shape voids at the surface and in the bulk followed material flow lines. During mechanical in situ testing the needle voids grew from the fracture zone surface and coalesced with the sheared zone. In contrast, for the machined edge the damage started away from the edge (~ 800 microns) where substantial necking has occurred. Three-dimensional image analysis was performed to quantify the initial damage and its evolution. The FB600 was more resistant to cut edges than the DP600 steel.3D elasto-plastic FE calculations were carried out to investigate mechanical fields, potentially affected by the edge profile and pre-hardening profile. These parameters were not found to substantially modify the mechanical fields. Finally, axisymmetric 2D simulations for hole expansion were carried out for different sheet thicknesses using a post-treated damage evaluation calibrated on in-situ tomography data.La performance mécanique des pièces de structures automobiles fabriquées à partir de tôles d'acier à très haute résistance (THR) est souvent réduite à cause des bords découpés. Ce phénomène a été étudié pour deux nuances d'aciers ferrite-bainite (FB600) et ferrite-martensite (DP600), ce dernier présente un écrouissage et un gradient de dureté entre les phases plus élevés que ceux de la nuance FB600. Les micromécanismes d'endommagement de ces matériaux de base ont été caractérisés en utilisant les techniques de tomographie in situ et MEB in situ. Pour l'acier DP600, la germination de cavités a eu lieu sur les inclusions et aux interfaces ferrite-martensite. De plus, des cavités sous forme d'aiguille ont été observées dans la zone centrale correspondant à la ligne de ségrégation. Les mêmes mécanismes de germination ont été observés dans le cas de l'acier FB en plus de la germination aux interfaces des carbures qui a eu lieu à des déformations élevées. L'analyse d'image a montré que l'acier DP présente une densité initiale de cavités et une densité de cavités germées plus élevées que celles de l'acier FB qui semblait plus tolérant à l'endommagement. Des bords poinçonnés et usinés des nuances DP et FB ont été caractérisés par laminographie in situ lors d'un chargement mécanique. Pour les bords poinçonnés, ces observations ont permis de constater que la zone rompue est rugueuse et qu'un micro-endommagement sous forme d'aiguille initié sur la surface et dans le volume suit les lignes d'écoulement. Lors du chargement mécanique, les cavités sous forme d'aiguilles croissent à partir de la zone rompue et coalescent avec la zone cisaillée. En revanche, pour les bords usinés, l'endommagement s'initie loin de la surface de bords (~800 microns). Une analyse des données 3D a été réalisée pour quantifier l'état initial de l'endommagement et son évolution. L'acier FB600 a été plus résistant aux bords découpés que l'acier DP600. Des simulations 3D par éléments finis ont été menées pour étudier les champs mécaniques potentiellement affectés par le profil du bord découpé et du pré-écrouissage. Cette analyse a permis de conclure que seuls ces paramètres ne modifient pas localement les champs mécaniques. Finalement, des simulations axisymétriques par éléments finis de l'essai d'expansion de trou ont été réalisées pour différentes épaisseurs de tôle en utilisant les critères d'endommagement identifiés sur les résultats expérimentaux de la tomographie in situ

    Engine materials characterization and damage monitoring by using x ray technologies

    Get PDF
    X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results from one-, three-, five-, and eight-ply ceramic composite specimens show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber-matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. In situ film radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction-bonded silicon nitride matrix. It is concluded that pretest, in situ, and post-test x ray imaging can provide greater understanding of ceramic matrix composite mechanical behavior

    Multimodal Imaging for Characterisation and Testing of Composite Materials

    Get PDF
    Carbon fibre reinforced polymers (CFRP) are widely used across several industries, including aerospace, as they are lightweight and offer superior mechanical properties. Barely Visible Impact Damage (BVID), including cracks, delaminations, fibre debonding, as well as manufacturing defects such as porosity, are detrimental to CFRP structural integrity and detection of such faults is important. Different non-destructive evaluation (NDE) methods exist, including ultrasound, X-ray computed tomography (X-ray CT), infrared, and liquid penetrant testing. Edge Illumination X-ray Phase Contrast imaging (EI XPCi) was benchmarked as a viable NDE method for damage detection in CFRP, as it offers additional information through multimodal imaging. With the acquisition of at least three images, EI XPCi allows for the retrieval of the attenuation, differential phase, and dark field signals, using a pair of apertured masks. EI XPCi CT was compared with ultrasonic immersion C-scan imaging and high-resolution X-ray CT for the detection of severe impact damage in a composite plate (visible indent damage on surface of plate and protrusion on the back). The full extent and scale of the different defects were observed in the phase-based signals to a better standard than ultrasonic immersion imaging, with observations confirmed using high resolution X-ray CT. Planar EI XPCi was then compared to contrast agent X-ray imaging and ultrasonic immersion C-scan imaging on a different, less damaged specimen (only small crack visible on surface), showing that planar EI XPCi can detect a network of cracks across the specimen and overcame some of the limitations of contrast agent X-ray imaging. However, in the planar imaging, delamination damage was only detected by the ultrasonic measurement, showing the necessity of using both ultrasonic imaging and EI XPCi for a complete understanding of the damage in the plate. EI XPCi was used for the quantification of porosity for woven composite plates with varying porosity (0.7% to 10.7%), compared to ultrasonic through transmission imaging and destructive matrix digestion. The introduction of the standard deviation of the differential phase (STDP) showed excellent correlation with the porosity calculated from matrix digestion. The STDP signal quantifies the variation of the distribution of inhomogeneities for features of a scale equal to or above the system resolution (in this case, 12µm along the direction of phase sensitivity), which was advantageous for the investigated set of specimens with larger porosity
    corecore