6,215 research outputs found

    Walking Through Waypoints

    Full text link
    We initiate the study of a fundamental combinatorial problem: Given a capacitated graph G=(V,E)G=(V,E), find a shortest walk ("route") from a source s∈Vs\in V to a destination t∈Vt\in V that includes all vertices specified by a set W⊆V\mathscr{W}\subseteq V: the \emph{waypoints}. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main contribution is an exact polynomial-time algorithm for graphs of bounded treewidth. We also show that if the number of waypoints is logarithmically bounded, exact polynomial-time algorithms exist even for general graphs. Our two algorithms provide an almost complete characterization of what can be solved exactly in polynomial-time: we show that more general problems (e.g., on grid graphs of maximum degree 3, with slightly more waypoints) are computationally intractable

    Minimum degree conditions for monochromatic cycle partitioning

    Get PDF
    A classical result of Erd\H{o}s, Gy\'arf\'as and Pyber states that any rr-edge-coloured complete graph has a partition into O(r2log⁡r)O(r^2 \log r) monochromatic cycles. Here we determine the minimum degree threshold for this property. More precisely, we show that there exists a constant cc such that any rr-edge-coloured graph on nn vertices with minimum degree at least n/2+c⋅rlog⁡nn/2 + c \cdot r \log n has a partition into O(r2)O(r^2) monochromatic cycles. We also provide constructions showing that the minimum degree condition and the number of cycles are essentially tight.Comment: 22 pages (26 including appendix

    Cycles are strongly Ramsey-unsaturated

    Full text link
    We call a graph H Ramsey-unsaturated if there is an edge in the complement of H such that the Ramsey number r(H) of H does not change upon adding it to H. This notion was introduced by Balister, Lehel and Schelp who also proved that cycles (except for C4C_4) are Ramsey-unsaturated, and conjectured that, moreover, one may add any chord without changing the Ramsey number of the cycle CnC_n, unless n is even and adding the chord creates an odd cycle. We prove this conjecture for large cycles by showing a stronger statement: If a graph H is obtained by adding a linear number of chords to a cycle CnC_n, then r(H)=r(Cn)r(H)=r(C_n), as long as the maximum degree of H is bounded, H is either bipartite (for even n) or almost bipartite (for odd n), and n is large. This motivates us to call cycles strongly Ramsey-unsaturated. Our proof uses the regularity method

    Decomposing dense bipartite graphs into 4-cycles

    Get PDF
    Let G be an even bipartite graph with partite sets X and Y such that |Y | is even and the minimum degree of a vertex in Y is at least 95|X|/96. Suppose furthermore that the number of edges in G is divisible by 4. Then G decomposes into 4-cycles
    • 

    corecore