36,080 research outputs found

    On the Analysis of Neural Networks for Image Processing

    Get PDF
    This paper illustrates a novel method to analyze artificial neural networks so as to gain insight into their internal functionality. To this purpose, we will show analysis results of some feed-forward¿error-back-propagation neural networks for image processing. We will describe them in terms of domain-dependent basic functions, which are, in the case of the digital image processing domain, differential operators of various orders and with various angles of operation. Some other pixel classification techniques are analyzed in the same way, enabling easy comparison

    Analysis of Neural Networks for Edge Detection

    Get PDF
    This paper illustrates a novel method to analyze artificial neural networks so as to gain insight into their internal functionality. To this purpose, the elements of a feedforward-backpropagation neural network, that has been trained to detect edges in images, are described in terms of differential operators of various orders and with various angles of operation

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Dynamic Steerable Blocks in Deep Residual Networks

    Get PDF
    Filters in convolutional networks are typically parameterized in a pixel basis, that does not take prior knowledge about the visual world into account. We investigate the generalized notion of frames designed with image properties in mind, as alternatives to this parametrization. We show that frame-based ResNets and Densenets can improve performance on Cifar-10+ consistently, while having additional pleasant properties like steerability. By exploiting these transformation properties explicitly, we arrive at dynamic steerable blocks. They are an extension of residual blocks, that are able to seamlessly transform filters under pre-defined transformations, conditioned on the input at training and inference time. Dynamic steerable blocks learn the degree of invariance from data and locally adapt filters, allowing them to apply a different geometrical variant of the same filter to each location of the feature map. When evaluated on the Berkeley Segmentation contour detection dataset, our approach outperforms all competing approaches that do not utilize pre-training. Our results highlight the benefits of image-based regularization to deep networks
    corecore