7,792 research outputs found

    Intelligent Mobile Edge Computing Integrated with Blockchain Security Analysis for Millimetre-Wave Communication

    Get PDF
     With the increase in number of devices enabled the Internet of Things (IoT) communication with the centralized cloud computing model. With the implementation of the cloud computing model leads to increased Quality of Service (QoS). The cloud computing model provides the edge computing technologies for the real-time application to achieve reliability and security. Edge computing is considered the extension of the cloud computing technology involved in transfer of the sensitive information in the cloud edge to increase the network security. The real-time data transmission realizes the interaction with the high frequency to derive improved network security. However, with edge computing server security is considered as sensitive privacy information maintenance. The information generated from the IoT devices are separated based on stored edge servers based on the service location. Edge computing data is separated based in edge servers for the guaranteed data integrity for the data loss and storage. Blockchain technologies are subjected to different security problem for the data integrity through integrated blockchain technologies. This paper developed a Voted Blockchain Elliptical Curve Cryptography (VBECC) model for the millimetre wave application. The examination of the blockchain model is evaluated based on the edge computing architecture. The VBECC model develop an architectural model based Blockchain technology with the voting scheme for the millimetre application. The estimated voting scheme computes the edge computing technologies for the estimation of features through ECC model. The VBECC model computes the security model for the data transmission in the edge computing-based millimetre application. The experimental analysis stated that VBECC model uses the data security model ~8% increased performance than the conventional technique

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    When Mobile Blockchain Meets Edge Computing

    Full text link
    Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications, e.g., finance, healthcare, and logistics, its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data, i.e., a block, to the blockchain. Solving the proof-of-work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then, we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin
    corecore